Suppr超能文献

具有强遗传性的相互作用的凸模型

Convex Modeling of Interactions with Strong Heredity.

作者信息

Haris Asad, Witten Daniela, Simon Noah

机构信息

Department of Biostatistics, University of Washington.

Departments of Statistics and Biostatistics, University of Washington.

出版信息

J Comput Graph Stat. 2016;25(4):981-1004. doi: 10.1080/10618600.2015.1067217. Epub 2015 Aug 12.

Abstract

We consider the task of fitting a regression model involving interactions among a potentially large set of covariates, in which we wish to enforce strong heredity. We propose FAMILY, a very general framework for this task. Our proposal is a generalization of several existing methods, such as VANISH [Radchenko and James, 2010], hierNet [Bien et al., 2013], the all-pairs lasso, and the lasso using only main effects. It can be formulated as the solution to a convex optimization problem, which we solve using an efficient alternating directions method of multipliers (ADMM) algorithm. This algorithm has guaranteed convergence to the global optimum, can be easily specialized to any convex penalty function of interest, and allows for a straightforward extension to the setting of generalized linear models. We derive an unbiased estimator of the degrees of freedom of FAMILY, and explore its performance in a simulation study and on an HIV sequence data set.

摘要

我们考虑拟合一个涉及大量潜在协变量之间相互作用的回归模型的任务,在此任务中我们希望强化遗传性。我们提出了FAMILY,这是针对此任务的一个非常通用的框架。我们的提议是对几种现有方法的推广,例如VANISH [拉德琴科和詹姆斯,2010年]、hierNet [比恩等人,2013年]、全对全套索法以及仅使用主效应的套索法。它可以被表述为一个凸优化问题的解,我们使用一种高效的交替方向乘子法(ADMM)算法来求解该问题。此算法保证收敛到全局最优解,能够轻松专门针对任何感兴趣的凸惩罚函数,并且允许直接扩展到广义线性模型的设定。我们推导了FAMILY自由度的无偏估计量,并在模拟研究和一个HIV序列数据集上探究了其性能。

相似文献

1
Convex Modeling of Interactions with Strong Heredity.具有强遗传性的相互作用的凸模型
J Comput Graph Stat. 2016;25(4):981-1004. doi: 10.1080/10618600.2015.1067217. Epub 2015 Aug 12.
3
Algorithms for Fitting the Constrained Lasso.用于拟合约束套索的算法
J Comput Graph Stat. 2018;27(4):861-871. doi: 10.1080/10618600.2018.1473777. Epub 2018 Aug 7.
4
Fused Lasso Additive Model.融合套索加法模型
J Comput Graph Stat. 2016;25(4):1005-1025. doi: 10.1080/10618600.2015.1073155. Epub 2016 Nov 10.
9
A LASSO FOR HIERARCHICAL INTERACTIONS.用于分层交互的套索法
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.

引用本文的文献

2
Regression in tensor product spaces by the method of sieves.张量积空间中基于筛法的回归
Electron J Stat. 2023;17(2):3660-3727. doi: 10.1214/23-ejs2188. Epub 2023 Dec 7.
5
A scalable hierarchical lasso for gene-environment interactions.一种用于基因-环境相互作用的可扩展分层套索法。
J Comput Graph Stat. 2022;31(4):1091-1103. doi: 10.1080/10618600.2022.2039161. Epub 2022 Mar 31.
6
A Pliable Lasso.一个可弯曲的套索。
J Comput Graph Stat. 2020;29(1):215-225. doi: 10.1080/10618600.2019.1648271. Epub 2020 Sep 5.
8
Bayesian Factor Analysis for Inference on Interactions.用于交互作用推断的贝叶斯因子分析
J Am Stat Assoc. 2021;116(535):1521-1532. doi: 10.1080/01621459.2020.1745813. Epub 2020 Apr 20.

本文引用的文献

1
Learning interactions via hierarchical group-lasso regularization.通过分层组套索正则化学习交互作用。
J Comput Graph Stat. 2015;24(3):627-654. doi: 10.1080/10618600.2014.938812. Epub 2015 Sep 16.
2
A LASSO FOR HIERARCHICAL INTERACTIONS.用于分层交互的套索法
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.
3
Interaction Screening for Ultra-High Dimensional Data.超高维数据的交互筛选
J Am Stat Assoc. 2014;109(507):1285-1301. doi: 10.1080/01621459.2014.881741.
5
Penalized logistic regression for detecting gene interactions.用于检测基因相互作用的惩罚逻辑回归
Biostatistics. 2008 Jan;9(1):30-50. doi: 10.1093/biostatistics/kxm010. Epub 2007 Apr 11.
6
Genotypic predictors of human immunodeficiency virus type 1 drug resistance.1型人类免疫缺陷病毒耐药性的基因型预测指标
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17355-60. doi: 10.1073/pnas.0607274103. Epub 2006 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验