Suppr超能文献

基于群体水平测量的神经网络数据驱动控制

Data-Driven Control of Neuronal Networks with Population-Level Measurement.

作者信息

Vu Minh, Singhal Bharat, Zeng Shen, Li Jr-Shin

机构信息

Department of Electrical and Systems Engineering, Washington University in St. Louis, MO, USA.

出版信息

Res Sq. 2023 Mar 17:rs.3.rs-2600572. doi: 10.21203/rs.3.rs-2600572/v1.

Abstract

Controlling complex networks of nonlinear neurons is an important problem pertinent to various applications in engineering and natural sciences. While in recent years the control of neural populations with comprehensive biophysical models or simplified models, e.g., phase models, has seen notable advances, learning appropriate controls directly from data without any model assumptions remains a challenging and less developed area of research. In this paper, we address this problem by leveraging the network's local dynamics to iteratively learn an appropriate control without constructing a global model of the system. The proposed technique can effectively regulate synchrony in a neuronal network using only one input and one noisy population-level output measurement. We provide a theoretical analysis of our approach and illustrate its robustness to system variations and its generalizability to accommodate various physical constraints, such as charge-balanced inputs.

摘要

控制非线性神经元的复杂网络是一个与工程和自然科学中的各种应用相关的重要问题。近年来,使用综合生物物理模型或简化模型(如相位模型)对神经群体进行控制取得了显著进展,但直接从数据中学习合适的控制而不做任何模型假设仍然是一个具有挑战性且研究较少的领域。在本文中,我们通过利用网络的局部动力学来迭代学习合适的控制,而无需构建系统的全局模型,从而解决了这个问题。所提出的技术仅使用一个输入和一个有噪声的群体水平输出测量,就能有效地调节神经元网络中的同步性。我们对我们的方法进行了理论分析,并说明了它对系统变化的鲁棒性以及适应各种物理约束(如电荷平衡输入)的通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f0/10055505/39602704285b/nihpp-rs2600572v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验