Suppr超能文献

用于高效耐用阴离子交换膜水电解槽的MOF负载MOF衍生超细FeP-CoP异质结构

MOF-on-MOF-Derived Ultrafine FeP-CoP Heterostructures for High-Efficiency and Durable Anion Exchange Membrane Water Electrolyzers.

作者信息

Zhang Hua, Chen Anran, Bi Zenghui, Wang Xinzhong, Liu Xijun, Kong Qingquan, Zhang Wei, Mai Liqiang, Hu Guangzhi

机构信息

School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.

Donghai Laboratory, Zhoushan 316021, China.

出版信息

ACS Nano. 2023 Dec 12;17(23):24070-24079. doi: 10.1021/acsnano.3c09020. Epub 2023 Nov 27.

Abstract

The alkaline hydrogen evolution reaction (HER) in an anion exchange membrane water electrolyzer (AEMWE) is considered to be a promising approach for large-scale industrial hydrogen production. Nevertheless, it is severely hampered by the inability to operate tolerable HER catalysts consistently under low overpotentials at ampere-level current densities. Here, we develop a universal ligand-exchange (MOF-on-MOF) modulation strategy to synthesize ultrafine FeP and CoP nanoparticles, which are well anchored on N and P dual-doped carbon porous nanosheets (FeP-CoP/NPC). In addition, benefiting from the downshift of the d-band center and the interfacial Co-P-Fe bridging, the electron-rich P site is triggered, which induces the redistribution of electron density and the swapping of active centers, lowering the energy barrier of the HER. As a result, the FeP-CoP/NPC catalyst only requires a low overpotential of 175 mV to achieve a current density of 1000 mA cm. The solar-driven water electrolysis system presents a record-setting and stable solar-to-hydrogen conversion efficiency of 20.36%. Crucially, the catalyst could stably operate at 1000 mA cm over 1000 h in a practical AEMWE at an estimated cost of US$0.79 per kilogram of H, which achieves the target (US$2 per kg of H) set by the U.S. Department of Energy (DOE).

摘要

阴离子交换膜水电解槽(AEMWE)中的碱性析氢反应(HER)被认为是大规模工业制氢的一种有前景的方法。然而,由于无法在安培级电流密度下的低过电位下持续运行可耐受的HER催化剂,该方法受到严重阻碍。在此,我们开发了一种通用的配体交换(MOF-on-MOF)调制策略,以合成超细的FeP和CoP纳米颗粒,它们很好地锚定在N和P双掺杂的碳多孔纳米片(FeP-CoP/NPC)上。此外,受益于d带中心的下移和界面Co-P-Fe桥接,富电子的P位点被触发,这诱导了电子密度的重新分布和活性中心的交换,降低了HER的能垒。结果,FeP-CoP/NPC催化剂仅需175 mV的低过电位就能实现1000 mA cm的电流密度。太阳能驱动的水电解系统呈现出创纪录的、稳定的20.36%的太阳能到氢能转换效率。至关重要的是,该催化剂在实际的AEMWE中可以在1000 mA cm下稳定运行超过1000小时,估计每千克H的成本为0.79美元,达到了美国能源部(DOE)设定的目标(每千克H 2美元)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验