Suppr超能文献

基于深度神经网络的胎心监护图分类优于传统算法。

Deep neural network-based classification of cardiotocograms outperformed conventional algorithms.

机构信息

Department of Pharmacology, School of Medicine, Keio University, Tokyo, 160-8582, Japan.

Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.

出版信息

Sci Rep. 2021 Jun 28;11(1):13367. doi: 10.1038/s41598-021-92805-9.

Abstract

Cardiotocography records fetal heart rates and their temporal relationship to uterine contractions. To identify high risk fetuses, obstetricians inspect cardiotocograms (CTGs) by eye. Therefore, CTG traces are often interpreted differently among obstetricians, resulting in inappropriate interventions. However, few studies have focused on quantitative and nonbiased algorithms for CTG evaluation. In this study, we propose a newly constructed deep neural network model (CTG-net) to detect compromised fetal status. CTG-net consists of three convolutional layers that extract temporal patterns and interrelationships between fetal heart rate and uterine contraction signals. We aimed to classify the abnormal group (umbilical artery pH < 7.20 or Apgar score at 1 min < 7) and the normal group from CTG data. We evaluated the performance of the CTG-net with the F1 score and compared it with conventional algorithms, namely, support vector machine and k-means clustering, and another deep neural network model, long short-term memory. CTG-net showed the area under the receiver operating characteristic curve of 0.73 ± 0.04, which was significantly higher than that of long short-term memory. CTG-net, a quantitative and automated diagnostic aid system, enables early intervention for putatively abnormal fetuses, resulting in a reduction in the number of cases of hypoxic injury.

摘要

胎心监护记录胎儿心率及其与子宫收缩的时间关系。为了识别高危胎儿,产科医生通过肉眼检查胎心监护图(CTG)。因此,CTG 迹线在产科医生之间经常有不同的解释,导致干预不当。然而,很少有研究关注 CTG 评估的定量和无偏算法。在这项研究中,我们提出了一种新构建的深度神经网络模型(CTG-net),用于检测胎儿状况恶化。CTG-net 由三个卷积层组成,用于提取胎儿心率和子宫收缩信号之间的时间模式和相互关系。我们旨在从 CTG 数据中对异常组(脐动脉 pH 值<7.20 或 1 分钟 Apgar 评分<7)和正常组进行分类。我们使用 F1 评分评估了 CTG-net 的性能,并将其与传统算法(支持向量机和 k-均值聚类)和另一个深度神经网络模型长短期记忆进行了比较。CTG-net 的受试者工作特征曲线下面积为 0.73±0.04,明显高于长短期记忆。CTG-net 是一种定量和自动化的诊断辅助系统,能够对疑似异常胎儿进行早期干预,从而减少缺氧损伤的病例数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/592a/8238938/8a67e73d671d/41598_2021_92805_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验