Kumar Pawan, Antal Peter, Wang Xiyang, Wang Jiu, Trivedi Dhwanil, Fellner Ondřej František, Wu Yimin A, Nemec Ivan, Santana Vinicius Tadeu, Kopp Josef, Neugebauer Petr, Hu Jinguang, Kibria Md Golam, Kumar Subodh
Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW Calgary, Alberta, T2N 1N4, Canada.
Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, Olomouc, 77146, Czech Republic.
Small. 2024 Apr;20(15):e2304574. doi: 10.1002/smll.202304574. Epub 2023 Nov 27.
Direct selective transformation of greenhouse methane (CH) to liquid oxygenates (methanol) can substitute energy-intensive two-step (reforming/Fischer-Tropsch) synthesis while creating environmental benefits. The development of inexpensive, selective, and robust catalysts that enable room temperature conversion will decide the future of this technology. Single-atom catalysts (SACs) with isolated active centers embedded in support have displayed significant promises in catalysis to drive challenging reactions. Herein, high-density Ni single atoms are developed and stabilized on carbon nitride (NiCN) via thermal condensation of preorganized Ni-coordinated melem units. The physicochemical characterization of NiCN with various analytical techniques including HAADF-STEM and X-ray absorption fine structure (XAFS) validate the successful formation of Ni single atoms coordinated to the heptazine-constituted CN network. The presence of uniform catalytic sites improved visible absorption and carrier separation in densely populated NiCN SAC resulting in 100% selective photoconversion of (CH) to methanol using HO as an oxidant. The superior catalytic activity can be attributed to the generation of high oxidation (Ni═O) sites and selective C─H bond cleavage to generate •CH radicals on Ni centers, which can combine with •OH radicals to generate CHOH.
将温室气体甲烷(CH₄)直接选择性转化为液态含氧化合物(甲醇),能够替代能源密集型的两步法(重整/费托合成),同时带来环境效益。开发出能实现室温转化的廉价、选择性高且稳定的催化剂,将决定这项技术的未来。具有嵌入载体的孤立活性中心的单原子催化剂(SACs)在催化具有挑战性的反应中已展现出巨大潜力。在此,通过预组织的镍配位三聚氰胺单元的热缩合,在氮化碳(NiCN)上开发并稳定了高密度镍单原子。利用包括高角度环形暗场扫描透射电子显微镜(HAADF-STEM)和X射线吸收精细结构(XAFS)在内的各种分析技术对NiCN进行的物理化学表征,证实了与七嗪构成的CN网络配位的镍单原子成功形成。均匀催化位点的存在改善了密集填充的NiCN SAC中的可见光吸收和载流子分离,从而以H₂O作为氧化剂将CH₄100%选择性光转化为甲醇。优异的催化活性可归因于高氧化态(Ni═O)位点的产生以及在镍中心上选择性C─H键断裂以生成•CH自由基,其可与•OH自由基结合生成CH₂OH。