Suppr超能文献

基于自动提取的实验室和微生物数据的可解释机器学习进行念珠菌血症的早期诊断:AUTO-CAND 项目的结果。

Early diagnosis of candidemia with explainable machine learning on automatically extracted laboratory and microbiological data: results of the AUTO-CAND project.

机构信息

Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.

Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.

出版信息

Ann Med. 2023;55(2):2285454. doi: 10.1080/07853890.2023.2285454. Epub 2023 Nov 27.

Abstract

BACKGROUND

Candidemia is associated with a heavy burden of morbidity and mortality in hospitalized patients. The availability of blood culture results could require up to 48-72 h after blood draw; thus, early treatment decisions are made in the absence of a definite diagnosis.

METHODS

In this retrospective study, we assessed the performance of different supervised machine learning algorithms for the early differential diagnosis of candidemia and bacteremia in adult patients on a large dataset automatically extracted within the AUTO-CAND project.

RESULTS

Overall, 12,483 episodes of candidemia (1275; 10%) or bacteremia (11,208; 90%) were included in the analysis. A random forest classifier achieved the best diagnostic performance for candidemia, with sensitivity 0.98 and specificity 0.65 on the training set (true skill statistic [TSS] = 0.63) and sensitivity 0.74 and specificity 0.57 on the test set (TSS = 0.31). Then, the random classifier was trained in the subgroup of patients with available serum β-D-glucan (BDG) and procalcitonin (PCT) values by exploiting the feature ranking learned in the entire dataset. Although no statistically significant differences were observed from the performance measures obtained by employing BDG and PCT alone, the performance measures of the classifier that included the features selected in the entire dataset, plus BDG and PCT, were the highest in most cases.

CONCLUSIONS

Random forest classifiers trained on large datasets of automatically extracted data have the potential to improve current diagnostic algorithms for candidemia. However, further development through implementation of automatically extracted clinical features may be necessary to achieve crucial improvements.

摘要

背景

血液培养结果的获得可能需要在采血后 48-72 小时;因此,在没有明确诊断的情况下,早期治疗决策是在缺乏明确诊断的情况下做出的。

方法

在这项回顾性研究中,我们评估了不同监督机器学习算法在自动提取的 AUTO-CAND 项目内的大型数据集上对成人患者早期鉴别诊断念珠菌血症和菌血症的性能。

结果

总体而言,12483 例念珠菌血症(1275 例;10%)或菌血症(11208 例;90%)被纳入分析。随机森林分类器对念珠菌血症的诊断性能最佳,在训练集上的敏感性为 0.98,特异性为 0.65(真实技能统计量[TSS]为 0.63),在测试集上的敏感性为 0.74,特异性为 0.57(TSS 为 0.31)。然后,通过利用整个数据集中学到的特征排名,在有血清β-D-葡聚糖(BDG)和降钙素原(PCT)值的患者亚组中训练随机分类器。尽管单独使用 BDG 和 PCT 获得的性能指标没有统计学差异,但在大多数情况下,包括整个数据集选择的特征以及 BDG 和 PCT 的分类器的性能指标最高。

结论

在自动提取数据的大型数据集上训练的随机森林分类器有可能改善当前的念珠菌血症诊断算法。然而,可能需要通过实现自动提取的临床特征来进一步开发,以实现关键的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3dd/10836245/5844d60f0410/IANN_A_2285454_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验