Department of Management, Hadassah Academic College, Jerusalem, Israel.
School of Public Health, Drexel University, Philadelphia, PA, United States.
JMIR Mhealth Uhealth. 2023 Nov 28;11:e41551. doi: 10.2196/41551.
Smartphone-based emergency response apps are increasingly being used to identify and dispatch volunteer first responders (VFRs) to medical emergencies to provide faster first aid, which is associated with better prognoses. Volunteers' availability and willingness to respond are uncertain, leading in recent studies to response rates of 17% to 47%. Dispatch algorithms that select volunteers based on their estimated time of arrival (ETA) without considering the likelihood of response may be suboptimal due to a large percentage of alerts wasted on VFRs with shorter ETA but a low likelihood of response, resulting in delays until a volunteer who will actually respond can be dispatched.
This study aims to improve the decision-making process of human emergency medical services dispatchers and autonomous dispatch algorithms by presenting a novel approach for predicting whether a VFR will respond to or ignore a given alert.
We developed and compared 4 analytical models to predict VFRs' response behaviors based on emergency event characteristics, volunteers' demographic data and previous experience, and condition-specific parameters. We tested these 4 models using 4 different algorithms applied on actual demographic and response data from a 12-month study of 112 VFRs who received 993 alerts to respond to 188 opioid overdose emergencies. Model 4 used an additional dynamically updated synthetic dichotomous variable, frequent responder, which reflects the responder's previous behavior.
The highest accuracy (260/329, 79.1%) of prediction that a VFR will ignore an alert was achieved by 2 models that used events data, VFRs' demographic data, and their previous response experience, with slightly better overall accuracy (248/329, 75.4%) for model 4, which used the frequent responder indicator. Another model that used events data and VFRs' previous experience but did not use demographic data provided a high-accuracy prediction (277/329, 84.2%) of ignored alerts but a low-accuracy prediction (153/329, 46.5%) of responded alerts. The accuracy of the model that used events data only was unacceptably low. The J48 decision tree algorithm provided the best accuracy.
VFR dispatch has evolved in the last decades, thanks to technological advances and a better understanding of VFR management. The dispatch of substitute responders is a common approach in VFR systems. Predicting the response behavior of candidate responders in advance of dispatch can allow any VFR system to choose the best possible response candidates based not only on ETA but also on the probability of actual response. The integration of the probability to respond into the dispatch algorithm constitutes a new generation of individual dispatch, making this one of the first studies to harness the power of predictive analytics for VFR dispatch. Our findings can help VFR network administrators in their continual efforts to improve the response times of their networks and to save lives.
智能手机应急响应应用程序越来越多地被用于识别和派遣志愿者急救员(VFR)到医疗紧急情况现场,以便更快地提供急救,这与更好的预后有关。志愿者的可用性和响应意愿是不确定的,这导致最近的研究响应率为 17%至 47%。由于大量的警报被浪费在预计到达时间(ETA)较短但响应可能性较低的 VFR 上,因此基于 ETA 选择志愿者的调度算法可能不是最优的,这导致在实际能够响应的志愿者被派遣之前,会有延迟。
本研究旨在通过提出一种新的方法来预测 VFR 是否会响应或忽略给定的警报,从而改进人工紧急医疗服务调度员和自主调度算法的决策过程。
我们开发并比较了 4 种分析模型,以根据紧急事件特征、志愿者的人口统计学数据和以往经验以及特定于条件的参数来预测 VFR 的响应行为。我们使用来自一项为期 12 个月的 112 名 VFR 志愿者的研究中的实际人口统计学和响应数据,对这 4 种模型进行了测试,这些志愿者共收到 993 次响应 188 次阿片类药物过量紧急情况的警报。模型 4 使用了一个额外的动态更新的合成二分变量“频繁响应者”,反映了响应者的以往行为。
预测 VFR 将忽略警报的最高准确率(260/329,79.1%)是由 2 个模型实现的,这两个模型使用了事件数据、VFR 的人口统计学数据和他们以前的响应经验,而模型 4 的整体准确率略高(248/329,75.4%),模型 4 使用了频繁响应者指标。另一个使用了事件数据和 VFR 以往经验但未使用人口统计学数据的模型,对忽略警报的预测准确率较高(277/329,84.2%),但对响应警报的预测准确率较低(153/329,46.5%)。仅使用事件数据的模型的准确率低得令人无法接受。J48 决策树算法提供了最佳的准确率。
VFR 调度在过去几十年中得到了发展,这要归功于技术进步和对 VFR 管理的更好理解。替代响应者的调度是 VFR 系统中的常见方法。在派遣之前预测候选响应者的响应行为,可以使任何 VFR 系统不仅基于 ETA,还可以基于实际响应的可能性,选择最佳的响应候选者。将响应的可能性纳入调度算法中,构成了新一代的个体调度,这是第一个利用预测分析进行 VFR 调度的研究之一。我们的研究结果可以帮助 VFR 网络管理员不断努力提高其网络的响应时间并拯救生命。