Suppr超能文献

NeUDF:通过体绘制学习神经无符号距离场

NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering.

作者信息

Liu Yu-Tao, Wang Li, Yang Jie, Chen Weikai, Meng Xiaoxu, Yang Bo, Gao Lin

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Apr;46(4):2364-2377. doi: 10.1109/TPAMI.2023.3335353. Epub 2024 Mar 6.

Abstract

Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we formalize the rules of neural volume rendering for open surface reconstruction (e.g., self-consistent, unbiased, occlusion-aware), and derive a dedicated rendering weight function specially tailored for UDF. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including two typical open surface datasets MGN (Bhatnagar et al., 2019) and Deep Fashion 3D (Zhu et al., 2020). Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art methods in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries.

摘要

由于神经隐式渲染的最新进展,多视图形状重建取得了令人瞩目的进展。然而,现有的基于符号距离函数(SDF)的方法仅限于封闭表面,无法重建包含开放表面结构的各种现实世界物体。在这项工作中,我们引入了一种新的神经渲染框架,即编码神经无符号距离函数(coded NeUDF),它可以仅从多视图监督中重建具有任意拓扑结构的表面。为了获得表示任意表面的灵活性,NeUDF利用无符号距离函数(UDF)作为表面表示。虽然基于SDF的神经渲染器的简单扩展无法扩展到UDF,但我们形式化了用于开放表面重建的神经体渲染规则(例如,自洽、无偏、遮挡感知),并推导了专门为UDF量身定制的渲染权重函数。此外,为了应对开放表面渲染,其中入/出测试不再有效,我们提出了一种专门的法线正则化策略来解决表面方向模糊性。我们在多个具有挑战性的数据集上广泛评估了我们的方法,包括两个典型的开放表面数据集MGN(Bhatnagar等人,2019年)和深度时尚3D(Zhu等人,2020年)。实验结果表明,在多视图表面重建任务中,NeUDF可以显著优于现有方法,特别是对于具有开放边界的复杂形状。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验