Suppr超能文献

通过神经符号距离函数和辐射场进行颜色感知逆渲染来增强内镜场景重建

Enhancing endoscopic scene reconstruction with color-aware inverse rendering through neural SDF and radiance fields.

作者信息

Qin Zhibao, Chen Qi, Qian Kai, Zheng Qinhong, Shi Junsheng, Tai Yonghang

机构信息

Yunnan Key Laboratory of Opto-electronic Information Technology, Yunnan Normal University, Kunming 650500, China.

Department of Thoracic Surgery, Institute of The First People's Hospital of Yunnan Province, Kunming 650500, China.

出版信息

Biomed Opt Express. 2024 May 23;15(6):3914-3931. doi: 10.1364/BOE.521612. eCollection 2024 Jun 1.

Abstract

Virtual surgical training is crucial for enhancing minimally invasive surgical skills. Traditional geometric reconstruction methods based on medical CT/MRI images often fall short in providing color information, which is typically generated through pseudo-coloring or artistic rendering. To simultaneously reconstruct both the geometric shape and appearance information of organs, we propose a novel organ model reconstruction network called Endoscope-NeSRF. This network jointly leverages neural radiance fields and Signed Distance Function (SDF) to reconstruct a textured geometric model of the organ of interest from multi-view photometric images acquired by an endoscope. The prior knowledge of the inverse correlation between the distance from the light source to the object and the radiance improves the real physical properties of the organ. The dilated mask further refines the appearance and geometry at the organ's edges. We also proposed a highlight adaptive optimization strategy to remove highlights caused by the light source during the acquisition process, thereby preventing the reconstruction results in areas previously affected by highlights from turning white. Finally, the real-time realistic rendering of the organ model is achieved by combining the inverse rendering and Bidirectional Reflectance Distribution Function (BRDF) rendering methods. Experimental results show that our method closely matches the Instant-NGP method in appearance reconstruction, outperforming other state-of-the-art methods, and stands as the superior method in terms of geometric reconstruction. Our method obtained a detailed geometric model and realistic appearance, providing a realistic visual sense for virtual surgical simulation, which is important for medical training.

摘要

虚拟手术训练对于提升微创手术技能至关重要。基于医学CT/MRI图像的传统几何重建方法在提供颜色信息方面往往存在不足,颜色信息通常是通过伪彩色或艺术渲染生成的。为了同时重建器官的几何形状和外观信息,我们提出了一种名为Endoscope-NeSRF的新型器官模型重建网络。该网络联合利用神经辐射场和符号距离函数(SDF),从内窥镜采集的多视图光度图像中重建感兴趣器官的纹理几何模型。光源到物体的距离与辐射之间的反相关先验知识改善了器官的真实物理特性。扩张掩码进一步细化了器官边缘的外观和几何形状。我们还提出了一种高光自适应优化策略,以去除采集过程中由光源引起的高光,从而防止先前受高光影响区域的重建结果变白。最后,通过结合逆渲染和双向反射分布函数(BRDF)渲染方法实现了器官模型的实时逼真渲染。实验结果表明,我们的方法在外观重建方面与Instant-NGP方法非常匹配,优于其他现有方法,并且在几何重建方面是 superior 方法。我们的方法获得了详细的几何模型和逼真的外观,为虚拟手术模拟提供了逼真的视觉感受,这对医学训练很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/350d/11166432/2d255b8a08ba/boe-15-6-3914-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验