Suppr超能文献

香豆素依赖型三价铁还原在拟南芥策略 I 型铁获取中的主要作用。

A major role of coumarin-dependent ferric iron reduction in strategy I-type iron acquisition in Arabidopsis.

机构信息

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany.

Leibniz-Institut für Analytische Wissenschaften (ISAS) e.V., Bunsen-Kirchhoff-Str 11, 44139 Dortmund, Germany.

出版信息

Plant Cell. 2024 Feb 26;36(3):642-664. doi: 10.1093/plcell/koad279.

Abstract

Many non-graminaceous species release various coumarins in response to iron (Fe) deficiency. However, the physiological relevance of these coumarins remains poorly understood. Here, we show that the three enzymes leading to sideretin biosynthesis co-exist in Arabidopsis (Arabidopsis thaliana) epidermal and cortical cells and that the shift to fraxetin at alkaline pH depends on MYB72-mediated repression of CYTOCHROME P450, FAMILY 82, SUBFAMILY C, POLYPEPTIDE 4 (CYP82C4). In vitro, only fraxetin and sideretin can reduce part of the Fe(III) that they mobilize. We demonstrate that coumarin-mediated Fe(III) reduction is critical under acidic conditions, as fraxetin and sideretin can complement the Fe(III)-chelate reductase mutant ferric reduction oxidase 2 (fro2), and disruption of coumarin biosynthesis in fro2 plants impairs Fe acquisition similar to in the Fe(II) uptake-deficient mutant iron-regulated transporter 1 (irt1). Disruption of sideretin biosynthesis in a fro2 cyp82C4-1 double mutant revealed that sideretin is the dominant chemical reductant that functions with FRO2 to mediate Fe(II) formation for root uptake. At alkaline pH, Fe(III) reduction by coumarins becomes almost negligible but fraxetin still sustains high Fe(III) mobilization, suggesting that its main function is to provide chelated Fe(III) for FRO2. Our study indicates that strategy-I plants link sideretin and fraxetin biosynthesis and secretion to external pH to recruit distinct coumarin chemical activities to maximize Fe acquisition according to prevailing soil pH conditions.

摘要

许多非禾本科植物在缺铁时会释放各种香豆素。然而,这些香豆素的生理相关性仍知之甚少。在这里,我们表明,导致 sideretin 生物合成的三种酶共同存在于拟南芥(Arabidopsis thaliana)表皮和皮层细胞中,而在碱性 pH 下向 fraxetin 的转变依赖于 MYB72 介导的对细胞色素 P450、家族 82、亚家族 C、多肽 4(CYP82C4)的抑制。在体外,只有 fraxetin 和 sideretin 可以还原它们动员的部分 Fe(III)。我们证明,香豆素介导的 Fe(III)还原在酸性条件下至关重要,因为 fraxetin 和 sideretin 可以补充 Fe(III)-螯合还原酶突变体 ferric reduction oxidase 2(fro2),并且在 fro2 植物中破坏香豆素生物合成会损害铁的获取,这与铁摄取缺陷突变体 iron-regulated transporter 1(irt1)相似。在 fro2 cyp82C4-1 双突变体中破坏 sideretin 生物合成表明,sideretin 是主要的化学还原剂,与 FRO2 一起介导 Fe(II)的形成,用于根部吸收。在碱性 pH 下,香豆素对 Fe(III)的还原作用几乎可以忽略不计,但 fraxetin 仍能维持高 Fe(III)动员,这表明其主要功能是为 FRO2 提供螯合 Fe(III)。我们的研究表明,策略-I 植物将 sideretin 和 fraxetin 的生物合成和分泌与外部 pH 联系起来,根据当前土壤 pH 条件,利用不同的香豆素化学活性来最大限度地获取铁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2542/10896297/38e1f8400d1c/koad279f1.jpg

相似文献

2
Feruloyl-CoA 6'-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis.
Plant Physiol. 2014 Jan;164(1):160-72. doi: 10.1104/pp.113.228544. Epub 2013 Nov 18.
3
Scopoletin 8-Hydroxylase-Mediated Fraxetin Production Is Crucial for Iron Mobilization.
Plant Physiol. 2018 May;177(1):194-207. doi: 10.1104/pp.18.00178. Epub 2018 Mar 20.
4
Biosynthesis of redox-active metabolites in response to iron deficiency in plants.
Nat Chem Biol. 2018 May;14(5):442-450. doi: 10.1038/s41589-018-0019-2. Epub 2018 Mar 26.
5
Assay of Fe(III) Chelate Reductase Activity in Arabidopsis thaliana Root.
Methods Mol Biol. 2023;2665:31-36. doi: 10.1007/978-1-0716-3183-6_3.
6
7
IRONMAN tunes responses to iron deficiency in concert with environmental pH.
Plant Physiol. 2021 Nov 3;187(3):1728-1745. doi: 10.1093/plphys/kiab329.
8
Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process.
New Phytol. 2021 Feb;229(4):2062-2079. doi: 10.1111/nph.17090. Epub 2020 Dec 16.
9
Gibberellin-induced expression of Fe uptake-related genes in Arabidopsis.
Plant Cell Physiol. 2014 Jan;55(1):87-98. doi: 10.1093/pcp/pct160. Epub 2013 Nov 4.
10
Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway.
Plant J. 2008 Jul;55(2):289-300. doi: 10.1111/j.1365-313X.2008.03502.x. Epub 2008 Apr 4.

引用本文的文献

1
Microbial drivers of root plasticity.
New Phytol. 2025 Oct;248(1):52-67. doi: 10.1111/nph.70371. Epub 2025 Jul 21.
2
Impact of Iron Deficiency on the Arabidopsis thaliana Phloem Sap Proteome, a Key Role for bHLH121.
Physiol Plant. 2025 May-Jun;177(3):e70336. doi: 10.1111/ppl.70336.
4
The Genome of the Lima Bean Variety Baiyu Bean Highlights Its Evolutionary Characteristics.
Ecol Evol. 2025 Feb 28;15(3):e71027. doi: 10.1002/ece3.71027. eCollection 2025 Mar.
5
Barriers and carriers for transition metal homeostasis in plants.
Plant Commun. 2025 Feb 10;6(2):101235. doi: 10.1016/j.xplc.2024.101235. Epub 2024 Dec 26.
6
Combating plant diseases through transition metal allocation.
New Phytol. 2025 Mar;245(5):1833-1842. doi: 10.1111/nph.20366. Epub 2024 Dec 20.
8
The Phosphorus-Iron Nexus: Decoding the Nutrients Interaction in Soil and Plant.
Int J Mol Sci. 2024 Jun 26;25(13):6992. doi: 10.3390/ijms25136992.

本文引用的文献

1
IRONMAN tunes responses to iron deficiency in concert with environmental pH.
Plant Physiol. 2021 Nov 3;187(3):1728-1745. doi: 10.1093/plphys/kiab329.
2
Root exudates impact plant performance under abiotic stress.
Trends Plant Sci. 2022 Jan;27(1):80-91. doi: 10.1016/j.tplants.2021.08.003. Epub 2021 Sep 1.
3
Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process.
New Phytol. 2021 Feb;229(4):2062-2079. doi: 10.1111/nph.17090. Epub 2020 Dec 16.
4
Root-Secreted Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis.
Cell Host Microbe. 2020 Dec 9;28(6):825-837.e6. doi: 10.1016/j.chom.2020.09.006. Epub 2020 Oct 6.
5
pH-dependent transcriptional profile changes in iron-deficient Arabidopsis roots.
BMC Genomics. 2020 Oct 6;21(1):694. doi: 10.1186/s12864-020-07116-6.
6
Importance of oxidation products in coumarin-mediated Fe(hydr)oxide mineral dissolution.
Biometals. 2020 Dec;33(6):305-321. doi: 10.1007/s10534-020-00248-y. Epub 2020 Oct 5.
7
Dynamic Control of the High-Affinity Iron Uptake Complex in Root Epidermal Cells.
Plant Physiol. 2020 Nov;184(3):1236-1250. doi: 10.1104/pp.20.00234. Epub 2020 Sep 1.
9
COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins.
Nat Plants. 2019 Oct;5(10):1066-1075. doi: 10.1038/s41477-019-0510-0. Epub 2019 Sep 9.
10
Plant-derived coumarins shape the composition of an synthetic root microbiome.
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12558-12565. doi: 10.1073/pnas.1820691116. Epub 2019 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验