School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
Cell Syst. 2023 Dec 20;14(12):1103-1112.e6. doi: 10.1016/j.cels.2023.10.011. Epub 2023 Nov 27.
The sequence in the 5' untranslated regions (UTRs) is known to affect mRNA translation rates. However, the underlying regulatory grammar remains elusive. Here, we propose MTtrans, a multi-task translation rate predictor capable of learning common sequence patterns from datasets across various experimental techniques. The core premise is that common motifs are more likely to be genuinely involved in translation control. MTtrans outperforms existing methods in both accuracy and the ability to capture transferable motifs across species, highlighting its strength in identifying evolutionarily conserved sequence motifs. Our independent fluorescence-activated cell sorting coupled with deep sequencing (FACS-seq) experiment validates the impact of most motifs identified by MTtrans. Additionally, we introduce "GRU-rewiring," a technique to interpret the hidden states of the recurrent units. Gated recurrent unit (GRU)-rewiring allows us to identify regulatory element-enriched positions and examine the local effects of 5' UTR mutations. MTtrans is a powerful tool for deciphering the translation regulatory motifs.
5' 非翻译区(UTR)中的序列已知会影响 mRNA 翻译速率。然而,潜在的调控规则仍然难以捉摸。在这里,我们提出了 MTtrans,这是一种多任务翻译速率预测器,能够从各种实验技术的数据集中学到常见的序列模式。核心前提是,常见的基序更有可能真正参与翻译控制。MTtrans 在准确性和在跨物种捕捉可转移基序的能力方面均优于现有方法,突出了其在识别进化保守序列基序方面的优势。我们独立的荧光激活细胞分选与深度测序(FACS-seq)实验验证了 MTtrans 识别的大多数基序的影响。此外,我们引入了“GRU 重连”技术,用于解释递归单元的隐藏状态。门控循环单元(GRU)重连使我们能够识别富含调节元件的位置,并检查 5'UTR 突变的局部影响。MTtrans 是破译翻译调控基序的强大工具。