Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i381-i389. doi: 10.1093/bioinformatics/btae262.
Cis-acting mRNA elements play a key role in the regulation of mRNA stability and translation efficiency. Revealing the interactions of these elements and their impact plays a crucial role in understanding the regulation of the mRNA translation process, which supports the development of mRNA-based medicine or vaccines. Deep neural networks (DNN) can learn complex cis-regulatory codes from RNA sequences. However, extracting these cis-regulatory codes efficiently from DNN remains a significant challenge. Here, we propose a method based on our toolkit NeuronMotif and motif mutagenesis, which not only enables the discovery of diverse and high-quality motifs but also efficiently reveals motif interactions. By interpreting deep-learning models, we have discovered several crucial motifs that impact mRNA translation efficiency and stability, as well as some unknown motifs or motif syntax, offering novel insights for biologists. Furthermore, we note that it is challenging to enrich motif syntax in datasets composed of randomly generated sequences, and they may not contain sufficient biological signals.
The source code and data used to produce the results and analyses presented in this manuscript are available from GitHub (https://github.com/WangLabTHU/combmotif).
顺式作用的 mRNA 元件在调节 mRNA 稳定性和翻译效率方面起着关键作用。揭示这些元件的相互作用及其影响对于理解 mRNA 翻译过程的调控至关重要,这有助于开发基于 mRNA 的药物或疫苗。深度神经网络 (DNN) 可以从 RNA 序列中学习复杂的顺式调控密码。然而,从 DNN 中有效地提取这些顺式调控密码仍然是一个重大挑战。在这里,我们提出了一种基于我们的 NeuronMotif 工具包和 motif 诱变的方法,该方法不仅能够发现多样化和高质量的 motif,还能够有效地揭示 motif 相互作用。通过对深度学习模型的解释,我们发现了几个对 mRNA 翻译效率和稳定性有影响的关键 motif,以及一些未知的 motif 或 motif 语法,为生物学家提供了新的见解。此外,我们注意到,在由随机生成的序列组成的数据集上富集 motif 语法具有挑战性,并且它们可能不包含足够的生物学信号。
产生本文中呈现的结果和分析所使用的源代码和数据可从 GitHub(https://github.com/WangLabTHU/combmotif)获得。