Suppr超能文献

确定8至13岁儿童Move4加速度计的截断点。

Determination of cut-off points for the Move4 accelerometer in children aged 8-13 years.

作者信息

Beck Franziska, Marzi Isabel, Eisenreich Alina, Seemüller Selina, Tristram Clara, Reimers Anne K

机构信息

Department of Sport Science and Sport, Friedrich-Alexander-Universität Erlangen-Nürnberg, Gebbertstraße 123b, 91058, Erlangen, Germany.

Movisens GmbH, Augartenstraße 1, 76137, Karlsruhe, Germany.

出版信息

BMC Sports Sci Med Rehabil. 2023 Nov 28;15(1):163. doi: 10.1186/s13102-023-00775-4.

Abstract

BACKGROUND

To assess physical activity (PA) there is a need of objective, valid and reliable measurement methods like accelerometers. Before these devices can be used for research, they need to be calibrated and validated for specific age groups as the locomotion differs between children and adults, for instance. Therefore, the aim of the present study was the calibration and validation of the Move4 accelerometer for children aged 8-13 years.

METHODS

53 normal weighted children (52% boys, 48%girls) aged 8-13 years (mean age = 10.69 ± 1.46, mean BMI = 17.93 kg/m, 60th percentile), wore the Move4 sensor at four different body positions (thigh, hip, wrist and the Move4ecg including heart rate measurement at the chest). They completed nine activities that considered the four activity levels (sedentary behavior (SB), light PA (LPA), moderate PA (MPA) and vigorous PA (VPA)) within a test-retest design. Intensity values were determined using the mean amplitude deviation (MAD) as well as the movement acceleration intensity (MAI) metrics. Determination of activities and energy expenditure was validated using heart rate. After that, cut-off points were determined in Matlab by using the Classification and Regression Trees (CART) method. The agreement for the cut-off points between T1 and T2 was analyzed.

RESULTS

MAD and MAI accelerometer values were lowest when children were lying on the floor and highest when running or doing jumping jacks. The mean correlation coefficient between acceleration values and heart rate was 0.595 (p = 0.01) for MAD metric and 0.611 (p = 0.01) for MAI metric, indicating strong correlations. Further, the MAD cut-off points for SB-LPA are 52.9 mg (hip), 62.4 mg (thigh), 86.4 mg (wrist) and 45.9 mg (chest), for LPA-MPA they are 173.3 mg (hip), 260.7 mg (thigh), 194.4 mg (wrist) and 155.7 mg (chest) and for MPA-VPA the cut-off points are 543.6 mg (hip), 674.5 mg (thigh), 623.4 mg (wrist) and 545.5 mg (chest). Test-retest comparison indicated good values (mean differences = 9.8%).

CONCLUSION

This is the first study investigating cut-off points for children for four different sensor positions using raw accelerometer metrics (MAD/MAI). Sensitivity and specificity revealed good values for all positions. Nevertheless, depending on the sensor position, metric values differ according to the different involvement of the body in various activities. Thus, the sensor position should be carefully chosen depending on the research question of the study.

摘要

背景

为了评估身体活动(PA),需要像加速度计这样客观、有效且可靠的测量方法。在这些设备可用于研究之前,它们需要针对特定年龄组进行校准和验证,因为例如儿童和成人的运动方式有所不同。因此,本研究的目的是对8 - 13岁儿童的Move4加速度计进行校准和验证。

方法

53名年龄在8 - 13岁(平均年龄 = 10.69 ± 1.46,平均BMI = 17.93 kg/m²,第60百分位数)的正常体重儿童(52%为男孩,48%为女孩)在四个不同身体部位佩戴Move4传感器(大腿、臀部、手腕以及带有胸部心率测量功能的Move4ecg)。他们在重测设计中完成了九项考虑了四个活动水平(久坐行为(SB)、轻度身体活动(LPA)、中度身体活动(MPA)和剧烈身体活动(VPA))的活动。使用平均幅度偏差(MAD)以及运动加速度强度(MAI)指标来确定强度值。使用心率对活动和能量消耗的测定进行验证。之后,在Matlab中使用分类与回归树(CART)方法确定切点。分析了T1和T2之间切点的一致性。

结果

当儿童躺在地板上时,MAD和MAI加速度计值最低,而在跑步或做开合跳时最高。对于MAD指标,加速度值与心率之间的平均相关系数为0.595(p = 0.01),对于MAI指标为0.611(p = 0.01),表明相关性很强。此外,SB - LPA的MAD切点在臀部为52.9 mg,大腿为62.4 mg,手腕为86.4 mg,胸部为45.9 mg;LPA - MPA的切点在臀部为173.3 mg,大腿为260.7 mg,手腕为194.4 mg,胸部为155.7 mg;MPA - VPA的切点在臀部为543.6 mg,大腿为674.5 mg,手腕为623.4 mg,胸部为545.5 mg。重测比较显示出良好的值(平均差异 = 9.8%)。

结论

这是第一项使用原始加速度计指标(MAD/MAI)研究四个不同传感器位置儿童切点的研究。所有位置的敏感性和特异性都显示出良好的值。然而,根据传感器位置的不同,由于身体在各种活动中的参与程度不同,指标值也会有所差异。因此,应根据研究的问题仔细选择传感器位置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826d/10683356/27b1707602fb/13102_2023_775_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验