Das Arunendu, Das Sandeep, Pathak Biswarup
Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
Phys Chem Chem Phys. 2023 Dec 13;25(48):32913-32921. doi: 10.1039/d3cp03453d.
A molecular level understanding of the property evolution in binary nanoalloy catalysts is crucial for designing novel electrocatalysts for ammonia synthesis. In this regard, designing core-shell catalyst structures has been a versatile approach to achieve the product selectivity. Herein, we investigated the activity evolution of Fe-based core-shell (M@Fe) (M = Co, Ni, or Cu) clusters for the nitrogen reduction reaction (NRR). Nitrogen reduction following the associative mechanistic pathway is significantly activated over the Cu@Fe cluster. The d-band center from the electronic structure analysis is found to be upshifted, justifying the activity towards the NRR. The reduction reaction occurs the surface restructuring of the catalyst, in which the *NH formation is found to be the lowest endergonic potential determining step compared to pristine Fe(110). Based on this, the high NRR activity of the Cu@Fe cluster has been proposed, which, we envision, will provide useful insights into the position and compositional effects of core-shell structures for the discovery of efficient NRR electrocatalysts.
从分子层面理解二元纳米合金催化剂的性能演变对于设计用于氨合成的新型电催化剂至关重要。在这方面,设计核壳催化剂结构一直是实现产物选择性的通用方法。在此,我们研究了用于氮还原反应(NRR)的铁基核壳(M@Fe)(M = Co、Ni或Cu)簇的活性演变。通过缔合机理途径进行的氮还原在Cu@Fe簇上被显著激活。从电子结构分析发现d带中心上移,这证明了对NRR的活性。还原反应发生在催化剂的表面重构过程中,其中发现*NH的形成是与原始Fe(110)相比能量最低的决定反应势垒的步骤。基于此,提出了Cu@Fe簇的高NRR活性,我们设想这将为发现高效NRR电催化剂的核壳结构的位置和组成效应提供有用的见解。