Johny Vinitha, Ghosh Siddharth
International Center for Nanodevices, INCeNSE-TBI, Indian Institute of Science Campus, Bangalore 560 012, Karnataka, India.
Open Academic Research Council, Hooghly 712 235, West Bengal, India.
Langmuir. 2023 Dec 26;39(51):18889-18898. doi: 10.1021/acs.langmuir.3c02776. Epub 2023 Nov 29.
Here, we present a comprehensive study of self-driven flow dynamics at the liquid-gas interface within nanofluidic pores in the absence of external driving forces. The investigation focuses on the Rayleigh-Taylor instability phenomena that occur in sub-100 nm scale fluidic pores interfacing between 2 μm scale water and air reservoir. We obtain a flow velocity equation, and we validate it using simulations, concentrating on the mass transfer efficiency of these flow structures. Furthermore, we introduce the concept─"active solid-state nanopore"─that exhibits a self-driven flow switching behavior, transitioning between active and passive states without the need for mechanical components. We found a unique state of chaos at the nanoscale resembling the chaotic motion of fluid. This study contributes to the preliminary understanding of fluid dynamics at the classical-quantum interface. Implications of self-driven nanofluidics extend across diverse fields from biosensing and healthcare applications to advancing net-zero sustainable energy production and contributing to the fundamental understanding of fluid dynamics in confined spaces.
在此,我们展示了一项关于在没有外部驱动力的情况下纳米流体孔内液-气界面处自驱动流动动力学的综合研究。该研究聚焦于在2μm规模的水和空气储液器之间的亚100nm规模流体孔中发生的瑞利-泰勒不稳定性现象。我们获得了一个流速方程,并通过模拟对其进行验证,重点关注这些流动结构的传质效率。此外,我们引入了“有源固态纳米孔”这一概念,它呈现出自驱动流动切换行为,无需机械部件即可在有源和无源状态之间转变。我们发现了纳米尺度下一种独特的混沌状态,类似于流体的混沌运动。这项研究有助于对经典-量子界面处的流体动力学有初步的理解。自驱动纳米流体学的影响广泛延伸至从生物传感和医疗应用到推进净零可持续能源生产等不同领域,并有助于对受限空间内流体动力学的基本理解。