Pizarro Agustin D, Berli Claudio Luis Alberto, Soler-Illia Galo J A A, Bellino Martín Gonzalo
Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, (INS-EByN-UNSAM-CONICET), Av. 25 de Mayo 1169, 1650 San Martín, Argentina.
Instituto de Desarrollo Tecnológico para la Industria Química (INTEC-UNL-CONICET) Predio CCT CONICET Santa Fe, RN 168, 3000 Santa Fe, Argentina.
ACS Nano. 2024 Jun 25;18(25):16199-16207. doi: 10.1021/acsnano.4c01898. Epub 2024 Jun 11.
Biological signaling correlates with the interrelation between ion and nanofluidic transportation pathways. However, artificial embodies with reconfigurable ion-fluid transport interaction aspects remain largely elusive. Herein, we unveiled an intimate interplay between nanopore-driven advancing flow and ion carriage for the spontaneous imbibition of aqueous solutions at the nanoporous thin film level. Ionic factors dominate transport phenomena processing and integration (ions influence fluid motion, which in turn governs the self-regulated ion traveling). We show an ion-induced translation effect that finely converts a chemical input, the nature of ions, into a related fluidic output: modulation of the extent of imbibition. We further find complex imbibition dynamics induced by the ion type and population. We peculiarly pinpoint a stop-and-go effective transport process with a programmable delay time triggered by selective guest-host interactions. The ion-fluid transport interplay is captured by a simple model that considers the counterbalance between the capillary infiltration and solution concentration, owing to water loss at the nanoporous film-air interface. Our results demonstrate that nanopore networks present fresh scenarios for understanding and controlling autonomous macroscopic liquid locomotion and offer a distinctive working principle for smart ion operation.
生物信号传导与离子和纳米流体传输途径之间的相互关系相关。然而,具有可重构离子 - 流体传输相互作用方面的人工实体在很大程度上仍然难以捉摸。在此,我们揭示了纳米孔驱动的推进流与离子携带之间的密切相互作用,用于在纳米多孔薄膜水平上水溶液的自发吸液。离子因素主导传输现象的处理和整合(离子影响流体运动,而流体运动又反过来控制自我调节的离子移动)。我们展示了一种离子诱导的平移效应,它将化学输入(离子的性质)精细地转化为相关的流体输出:吸液程度的调节。我们进一步发现了由离子类型和数量引起的复杂吸液动力学。我们特别指出了一种由选择性客体 - 主体相互作用触发的具有可编程延迟时间的走走停停有效传输过程。离子 - 流体传输相互作用由一个简单模型捕获,该模型考虑了由于纳米多孔膜 - 空气界面处的水分损失导致的毛细管渗透和溶液浓度之间的平衡。我们的结果表明,纳米孔网络为理解和控制自主宏观液体运动提供了新的场景,并为智能离子操作提供了独特的工作原理。