Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.
mBio. 2023 Dec 19;14(6):e0238823. doi: 10.1128/mbio.02388-23. Epub 2023 Nov 29.
Short linear motifs (SLiMs) are 3-10 amino acid long binding motifs in intrinsically disordered protein regions (IDRs) that serve as ubiquitous protein-protein interaction modules in eukaryotic cells. Through molecular mimicry, viruses hijack these sequence motifs to control host cellular processes. It is thought that the small size of SLiMs and the high mutation frequencies of viral IDRs allow rapid host adaptation. However, a salient characteristic of RNA viruses, due to high replication errors, is their obligate existence as mutant swarms. Taking advantage of the uniquely large genomic database of SARS-CoV-2, here, we analyze the role of sequence diversity in the presentation of SLiMs, focusing on the highly abundant, multi-functional nucleocapsid protein. We find that motif mimicry is a highly dynamic process that produces an abundance of motifs transiently present in subsets of mutant species. This diversity allows the virus to efficiently explore eukaryotic motifs and evolve the host-virus interface.
短线性基序 (SLiMs) 是长度为 3-10 个氨基酸的结合基序,存在于无规则卷曲蛋白质区域 (IDR) 中,作为真核细胞中普遍存在的蛋白质-蛋白质相互作用模块。通过分子模拟,病毒劫持这些序列基序来控制宿主细胞过程。人们认为,SLiMs 的小尺寸和病毒 IDR 的高突变频率允许快速的宿主适应。然而,由于高复制错误,RNA 病毒的一个显著特征是它们必然作为突变体群体存在。利用 SARS-CoV-2 独特的大型基因组数据库,在这里,我们分析了序列多样性在 SLiMs 呈现中的作用,重点关注高度丰富的多功能核衣壳蛋白。我们发现,基序模拟是一个高度动态的过程,会产生大量瞬时存在于突变种亚群中的基序。这种多样性使病毒能够有效地探索真核生物的基序,并进化宿主-病毒界面。