Suppr超能文献

基于熵和随机游走的网络药理学探讨中医药治疗阿尔茨海默病。

Traditional Chinese Medicine studies for Alzheimer's disease via network pharmacology based on entropy and random walk.

机构信息

School of Mathematical Sciences, Tiangong University, Tianjin, China.

Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.

出版信息

PLoS One. 2023 Nov 29;18(11):e0294772. doi: 10.1371/journal.pone.0294772. eCollection 2023.

Abstract

Alzheimer's disease (AD) is a common neurodegenerative disease having complex pathogenesis, approved drugs can only alleviate symptoms of AD for a period of time. Traditional Chinese medicine (TCM) contains multiple active ingredients that can act on multiple targets simultaneously. In this paper, a novel algorithm based on entropy and random walk with the restart of heterogeneous network (RWRHE) is proposed for predicting active ingredients for AD and screening out the effective TCMs for AD. First, Six TCM compounds containing 20 herbs from the AD drug reviews in the CNKI (China National Knowledge Internet) are collected, their active ingredients and targets are retrieved from different databases. Then, comprehensive similarity networks of active ingredients and targets are constructed based on different aspects and entropy weight, respectively. A comprehensive heterogeneous network is constructed by integrating the known active ingredient-target association information and two comprehensive similarity networks. Subsequently, bi-random walks are applied on the heterogeneous network to predict active ingredient-target associations. AD related targets are selected as the seed nodes, a random walk is carried out on the target similarity network to predict the AD-target associations, and the associations of AD-active ingredients are inferred and scored. The effective herbs and compounds for AD are screened out based on their active ingredients' scores. The results measured by machine learning and bioinformatics show that the RWRHE algorithm achieves better prediction accuracy, the top 15 active ingredients may act as multi-target agents in the prevention and treatment of AD, Danshen, Gouteng and Chaihu are recommended as effective TCMs for AD, Yiqitongyutang is recommended as effective compound for AD.

摘要

阿尔茨海默病(AD)是一种常见的神经退行性疾病,具有复杂的发病机制,已批准的药物只能在一段时间内缓解 AD 的症状。中药(TCM)含有多种可同时作用于多个靶点的活性成分。本文提出了一种基于熵和异质网络重启动随机游走(RWRHE)的新算法,用于预测 AD 的活性成分并筛选出治疗 AD 的有效 TCM。首先,从中国知识资源总库(CNKI)的 AD 药物综述中收集了六种含有 20 种草药的 TCM 化合物,从不同的数据库中检索其活性成分和靶点。然后,分别基于不同方面和熵权重构建活性成分和靶点的综合相似性网络。通过整合已知的活性成分-靶标关联信息和两个综合相似性网络,构建一个综合异质网络。随后,在异质网络上应用双随机游走预测活性成分-靶标关联。选择 AD 相关靶标作为种子节点,在靶标相似性网络上进行随机游走以预测 AD-靶标关联,并推断和评分 AD-活性成分的关联。根据其活性成分的得分筛选出治疗 AD 的有效草药和化合物。机器学习和生物信息学测量的结果表明,RWRHE 算法具有更好的预测准确性,排名前 15 的活性成分可能作为 AD 预防和治疗的多靶标药物,丹参、钩藤和柴胡被推荐为 AD 的有效 TCM,益七通络汤被推荐为 AD 的有效化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8fa/10686466/009a6ab8169b/pone.0294772.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验