Okkeh Mohammad, De Vita Lorenzo, Bruni Giovanna, Doveri Lavinia, Minzioni Paolo, Restivo Elisa, Patrini Maddalena, Pallavicini Piersandro, Visai Livia
Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia 27100 Pavia Italy
Department of Chemistry, University of Pavia 27100 Pavia Italy
RSC Adv. 2023 Nov 20;13(48):33887-33904. doi: 10.1039/d3ra04398c. eCollection 2023 Nov 16.
are among the most frequent bacteria known to cause biofilm-related infections. Pathogenic biofilms represent a global healthcare challenge due to their high tolerance to antimicrobials. In this study, water soluble polyethylene glycol (PEG)-coated gold nanospheres (28 ppm) and nanostars (15 ppm) with electrostatically adsorbed photosensitizer (PS) Toluidine Blue O (TBO) ∼4 μM were successfully synthesized and characterized as PEG-GNPs@TBO and PEG-GNSs@TBO. Both nanoconjugates and the TBO 4 μM solution showed remarkable, if similar, antimicrobial photodynamic inactivation (aPDI) effects at 638 nm, inhibiting the formation of biofilms by two strains: a clinical methicillin-resistant (MRSA) isolate and () RP62A. Alternatively in biofilm eradication treatments, the aPDI effects of PEG-GNSs@TBO were more effective and yielded a 75% and 50% reduction in viable count of MRSA and RP62A preformed biofilms, respectively and when compared with untreated samples. This reduction in viable count was even greater than that obtained through aPDI treatment using a 40 μM TBO solution. Confocal laser microscopy (CLSM) and scanning electron microscope (SEM) images of PEG-GNSs@TBO's aPDI treatments revealed significant changes in the integrity and morphology of biofilms, with fewer colony masses. The generation of reactive oxygen species (ROS) upon PEG-GNSs@TBO's aPDI treatment was detected by CLSM using a specific ROS fluorescent probe, demonstrating bright fluorescence red spots across the surfaces of the treated biofilms. Our findings shine a light on the potential synergism between gold nanoparticles (AuNPs) and photosensitizers in developing novel nanoplatforms to target biofilm related infections.
是已知最常引起生物膜相关感染的细菌之一。致病性生物膜由于其对抗菌剂的高耐受性而成为全球医疗保健面临的挑战。在本研究中,成功合成了水溶性聚乙二醇(PEG)包覆的金纳米球(28 ppm)和纳米星(15 ppm),它们静电吸附了约4 μM的光敏剂(PS)甲苯胺蓝O(TBO),并分别表征为PEG-GNPs@TBO和PEG-GNSs@TBO。两种纳米共轭物和4 μM TBO溶液在638 nm处均表现出显著的(即使相似)抗菌光动力失活(aPDI)效应,抑制了两种菌株生物膜的形成:一种临床耐甲氧西林金黄色葡萄球菌(MRSA)分离株和()RP62A。另外,在生物膜根除治疗中,PEG-GNSs@TBO的aPDI效应更有效,与未处理样品相比,MRSA和RP62A预形成生物膜的活菌数分别降低了75%和50%。这种活菌数的降低甚至大于使用40 μM TBO溶液进行aPDI处理所获得的降低幅度。PEG-GNSs@TBO的aPDI处理的共聚焦激光显微镜(CLSM)和扫描电子显微镜(SEM)图像显示生物膜的完整性和形态发生了显著变化,菌落团块减少。通过CLSM使用特定的ROS荧光探针检测PEG-GNSs@TBO的aPDI处理后活性氧(ROS)的产生,结果表明在处理过的生物膜表面出现明亮的红色荧光斑点。我们的研究结果揭示了金纳米颗粒(AuNPs)和光敏剂在开发针对生物膜相关感染的新型纳米平台方面的潜在协同作用。