García Yadiris, Aguilar Joao, Polania Laura, Duarte Yorley, Sellergren Börje, Jiménez Verónica A
Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, Talcahuano 7100, Chile.
Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, República, 239, Santiago 8370146, Chile.
ACS Omega. 2024 Jul 18;9(30):33140-33152. doi: 10.1021/acsomega.4c04550. eCollection 2024 Jul 30.
This work presents the use of photoactive molecularly imprinted nanoparticles (MINs) to promote antibiotic degradation under visible light irradiation. Prototype MINs for the model antibiotic tetracycline (TC) were developed using molecular dynamics simulations to predict the TC-binding capacity of seven pre-polymerization mixtures. The studied formulations contained varying proportions of functional monomers with diverse physicochemical profiles, namely -isopropylacrylamide (NIPAM), --butylacrylamide (TBAM), acrylic acid (AA), and (-(3-aminopropyl)methacrylamide hydrochloride) (APMA) and a constant ratio of the cross-linker ,'-methylene-bis-acrylamide (BIS). Two monomer formulations showed markedly higher TC-binding capacities based on template-monomer interaction energies. These mixtures were used to synthesize photoactive MINs by high-dilution radical polymerization, followed by the EDC/NHS conjugation with the organic photosensitizer toluidine blue. MINs showed higher TC-binding capacities than non-imprinted nanoparticles (nINs) of identical composition. MINs and nINs exhibited photodynamic activity under visible light irradiation, as confirmed by singlet oxygen generation experiments. TC degradation was evaluated in 50 μmol L solutions placed in microplate wells containing immobilized nanoparticles and irradiated with white LED light (150 W m) for 1 h at room temperature. Degradation followed pseudo-zero-order kinetics with accelerated profiles in MIN-containing wells. Our findings suggest a key role of molecularly imprinted cavities in bringing TC closer to the photosensitizing moieties, minimizing the loss of oxidative potential due to reactive oxygen species diffusion. This degradation strategy can potentially extend to any organic pollutants for which MINs can be synthesized and opens valuable opportunities for exploring novel applications for molecularly imprinted materials.
这项工作展示了使用光活性分子印迹纳米颗粒(MINs)在可见光照射下促进抗生素降解。利用分子动力学模拟开发了针对模型抗生素四环素(TC)的原型MINs,以预测七种预聚合混合物对TC的结合能力。所研究的配方包含不同比例的具有不同物理化学特性的功能单体,即N - 异丙基丙烯酰胺(NIPAM)、N - 叔丁基丙烯酰胺(TBAM)、丙烯酸(AA)和(3 - 氨丙基)甲基丙烯酰胺盐酸盐(APMA),以及交联剂N,N'-亚甲基双丙烯酰胺(BIS)的恒定比例。基于模板 - 单体相互作用能,两种单体配方显示出明显更高的TC结合能力。这些混合物通过高稀释自由基聚合用于合成光活性MINs,随后通过EDC/NHS与有机光敏剂甲苯胺蓝进行共轭。MINs显示出比相同组成的非印迹纳米颗粒(nINs)更高的TC结合能力。通过单线态氧生成实验证实,MINs和nINs在可见光照射下表现出光动力活性。在室温下,将含有固定化纳米颗粒的微孔板孔中的50 μmol/L溶液用白色LED灯(150 W/m²)照射1小时,评估TC的降解情况。降解遵循准零级动力学,在含有MIN的孔中具有加速曲线。我们的研究结果表明,分子印迹腔在使TC更接近光敏部分方面起着关键作用,最大限度地减少了由于活性氧扩散导致的氧化电位损失。这种降解策略可能扩展到任何可以合成MINs的有机污染物,并为探索分子印迹材料的新应用提供了宝贵的机会。