Suppr超能文献

基于纳米材料包覆碳纸的葡萄糖氧化酶-海藻糖酶电极的制备与表征

Fabrication and characterization of glucose-oxidase-trehalase electrode based on nanomaterial-coated carbon paper.

作者信息

Zhang Yanqing, Selvarajan Varshini, Shi Ke, Kim Chang-Joon

机构信息

Department of Chemical Engineering and RIGET, Gyeongsang National University Jinju Republic of Korea

Department of Materials Engineering and Convergence Technology, Gyeongsang National University 501, Jinju-daero Jinju Gyeongnam 52828 Republic of Korea.

出版信息

RSC Adv. 2023 Nov 20;13(48):33918-33928. doi: 10.1039/d3ra01554h. eCollection 2023 Nov 16.

Abstract

Multienzyme systems are essential for utilizing di-, oligo-, and polysaccharides as fuels in enzymatic fuel cells effectively. However, the transfer of electrons generated by one enzymatic reaction in a multienzyme cascade at the electrode may be impeded by other enzymes, potentially hindering the overall efficiency. In this study, carbon paper was first modified by incorporating single-walled carbon nanotubes (SWCNTs) and gold nanoparticles (AuNPs) sequentially. Subsequently, glucose oxidase (GOx) and a trehalase-gelatin mixture were immobilized separately on the nanostructured carbon paper layer-by-layer adsorption to mitigate the electron transfer hindrance caused by trehalase. The anode was first fabricated by immobilizing GOx and trehalase on the modified carbon paper, and the cathode was then fabricated by immobilizing bilirubin oxidase on the nanostructured electrode. The SWCNTs and AuNPs were distributed adequately on the electrode surface, which improved the electrode performance, as demonstrated by electrochemical and morphological analyses. An enzymatic fuel cell was assembled and tested using trehalose as the fuel, and a maximum power density of 23 μW cm was obtained at a discharge current density of 60 μA cm. The anode exhibited remarkable reusability and stability.

摘要

多酶系统对于在酶燃料电池中有效利用二糖、寡糖和多糖作为燃料至关重要。然而,在多酶级联反应中,一个酶促反应产生的电子在电极处的转移可能会受到其他酶的阻碍,从而可能影响整体效率。在本研究中,首先通过依次掺入单壁碳纳米管(SWCNTs)和金纳米颗粒(AuNPs)对碳纸进行改性。随后,通过逐层吸附将葡萄糖氧化酶(GOx)和海藻糖酶 - 明胶混合物分别固定在纳米结构碳纸上来减轻海藻糖酶引起的电子转移阻碍。首先通过将GOx和海藻糖酶固定在改性碳纸上制备阳极,然后通过将胆红素氧化酶固定在纳米结构电极上来制备阴极。SWCNTs和AuNPs在电极表面充分分布,如电化学和形态分析所示,这提高了电极性能。使用海藻糖作为燃料组装并测试了酶燃料电池,在放电电流密度为60 μA cm时获得了23 μW cm的最大功率密度。阳极表现出显著的可重复使用性和稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/10658183/7602f307a9a9/d3ra01554h-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验