Brack Enzo, Plodinec Milivoj, Willinger Marc-Georg, Copéret Christophe
Department of Chemistry and Applied Biosciences ETH Zurich Vladimir Prelog Weg 2/10 CH-8093 Zurich Switzerland
Scientific Center for Optical and Electron Microscopy (ScopeM) ETH Zurich Otto-Stern-Weg 3 CH-8093 Zurich Switzerland.
Chem Sci. 2023 Oct 25;14(44):12739-12746. doi: 10.1039/d3sc04711c. eCollection 2023 Nov 15.
Propane Dehydrogenation is a key technology, where Pt-based catalysts have widely been investigated in industry and academia, with development exploring the use of promoters (Sn, Zn, Ga, ) and additives (Na, K, Ca, Si, ) towards improved catalytic performances. Recent studies have focused on the role of Ga promotion: while computations suggest that Ga plays a key role in enhancing catalytic selectivity and stability of PtGa catalysts through Pt-site isolation as well as morphological changes, experimental evidence are lacking because of the use of oxide supports that prevent more detailed investigation. Here, we develop a methodology to generate Pt and PtGa nanoparticles with tailored interfaces on carbon supports by combining surface organometallic chemistry (SOMC) and specific thermolytic molecular precursors containing or not siloxide ligands. This approach enables the preparation of supported nanoparticles, exhibiting or not an oxide interface, suitable for state-of-the art electron microscopy and XANES characterization. We show that the introduction of Ga enables the formation of homogenously alloyed, amorphous PtGa nanoparticles, in sharp contrast to highly crystalline monometallic Pt nanoparticles. Furthermore, the presence of an oxide interface is shown to stabilize the formation of small particles, at the expense of propene selectivity loss (formation of cracking side-products, methane/ethene), explaining the use of additives such as Na, K and Ca in industrial catalysts.
丙烷脱氢是一项关键技术,基于铂的催化剂在工业和学术界已得到广泛研究,其发展方向是探索使用促进剂(锡、锌、镓等)和添加剂(钠、钾、钙、硅等)来提高催化性能。最近的研究集中在镓促进作用的角色上:虽然计算表明镓通过铂位点隔离以及形态变化在提高PtGa催化剂的催化选择性和稳定性方面起着关键作用,但由于使用了氧化物载体阻碍了更详细的研究,因此缺乏实验证据。在此,我们通过结合表面有机金属化学(SOMC)和含有或不含有硅氧化物配体的特定热解分子前体,开发了一种在碳载体上生成具有定制界面的铂和PtGa纳米颗粒的方法。这种方法能够制备出具有或不具有氧化物界面的负载型纳米颗粒,适用于先进的电子显微镜和X射线吸收近边结构(XANES)表征。我们表明,镓的引入能够形成均匀合金化的非晶态PtGa纳米颗粒,这与高度结晶的单金属铂纳米颗粒形成鲜明对比。此外,氧化物界面的存在被证明会稳定小颗粒的形成,但以丙烯选择性损失(形成裂解副产物,甲烷/乙烯)为代价,这解释了工业催化剂中使用钠、钾和钙等添加剂的原因。