Payard P-A, Rochlitz L, Searles K, Foppa L, Leuthold B, Safonova O V, Comas-Vives A, Copéret C
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland.
Paul Scherrer Institut, CH-5232 Villigen, Switzerland.
JACS Au. 2021 Jul 28;1(9):1445-1458. doi: 10.1021/jacsau.1c00212. eCollection 2021 Sep 27.
Nonoxidative dehydrogenation of light alkanes has seen a renewed interest in recent years. While PtGa systems appear among the most efficient catalyst for this reaction and are now implemented in production plants, the origin of the high catalytic performance in terms of activity, selectivity, and stability in PtGa-based catalysts is largely unknown. Here we use molecular modeling at the DFT level on three different models: (i) periodic surfaces, (ii) clusters using static calculations, and (iii) realistic size silica-supported nanoparticles (1 nm) using molecular dynamics and metadynamics. The combination of the models with experimental data (XAS, TEM) allowed the refinement of the structure of silica-supported PtGa nanoparticles synthesized via surface organometallic chemistry and provided a structure-activity relationship at the molecular level. Using this approach, the key interaction between Pt and Ga was evidenced and analyzed: the presence of Ga increases (i) the interaction between the oxide surface and the nanoparticles, which reduces sintering, (ii) the Pt site isolation, and (iii) the mobility of surface atoms which promotes the high activity, selectivity, and stability of this catalyst. Considering the complete system for modeling that includes the silica support as well as the dynamics of the PtGa nanoparticle is essential to understand the catalytic performances.
近年来,轻质烷烃的非氧化脱氢反应重新引起了人们的关注。虽然PtGa体系似乎是该反应最有效的催化剂之一,目前已应用于生产装置中,但基于PtGa的催化剂在活性、选择性和稳定性方面具有高催化性能的原因在很大程度上尚不清楚。在这里,我们在DFT水平上使用分子模型对三种不同的模型进行研究:(i)周期性表面,(ii)使用静态计算的团簇,以及(iii)使用分子动力学和元动力学的实际尺寸的二氧化硅负载纳米颗粒(1 nm)。将这些模型与实验数据(XAS、TEM)相结合,使得通过表面有机金属化学合成的二氧化硅负载PtGa纳米颗粒的结构得以优化,并在分子水平上提供了结构-活性关系。通过这种方法,Pt和Ga之间的关键相互作用得到了证实和分析:Ga的存在增加了(i)氧化物表面与纳米颗粒之间的相互作用,这减少了烧结,(ii)Pt位点的隔离,以及(iii)表面原子的迁移率,这促进了该催化剂的高活性、选择性和稳定性。考虑到包括二氧化硅载体以及PtGa纳米颗粒动力学的完整建模系统对于理解催化性能至关重要。