Suppr超能文献

通过整合谷氨酰胺代谢的单细胞和批量转录组分析开发阿尔茨海默病的诊断和风险预测模型。

Development of a diagnostic and risk prediction model for Alzheimer's disease through integration of single-cell and bulk transcriptomic analysis of glutamine metabolism.

作者信息

Guo Yan, Zhao Tingru, Chu Xi, Cheng Zhenyun

机构信息

Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China.

The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.

出版信息

Front Aging Neurosci. 2023 Nov 10;15:1275793. doi: 10.3389/fnagi.2023.1275793. eCollection 2023.

Abstract

BACKGROUND

In this study, we present a novel system for quantifying glutamine metabolism (GM) to enhance the effectiveness of Alzheimer's disease (AD) diagnosis and risk prediction.

METHODS

Single-cell RNA sequencing (scRNA-seq) analysis was utilized to comprehensively assess the expression patterns of GM. The WGCNA algorithm was applied to investigate the most significant genes related to GM. Subsequently, three machine learning algorithms (Boruta, LASSO, and SVM-RFE) were employed to identify GM-associated characteristic genes and develop a risk model. Patients were divided into high- and low-risk groups based on this model. Moreover, we explored biological properties, distinct signaling pathways, and immunological characteristics of AD patients at different risk levels. Finally, and models of AD were constructed to validate the characteristics of the feature genes.

RESULTS

Both scRNA-seq and bulk transcriptomic analyses revealed increased GM activity in AD patients, specifically in certain cell subsets (pDC, Tem/Effector helper T cells (LTB), and plasma cells). Cells with higher GM scores demonstrated more significant numbers and strengths of interactions with other cell types. The WGCNA algorithm identified 360 genes related to GM, and a risk score was constructed based on nine characteristic genes (ATP13A4, PIK3C2A, CD164, PHF1, CES2, PDGFB, LCOR, TMEM30A, and PLXNA1) identified through multiple machine learning algorithms displayed reliable diagnostic efficacy for AD onset. Nomograms, calibration curves, and decision curve analysis (DCA) based on these characteristic genes provided significant clinical benefits for AD patients. High-risk AD patients exhibited higher levels of immune-related functions and pathways, increased immune cell infiltration, and elevated expressions of immune modulators. RT-qPCR analysis revealed that the majority of the nine characteristic genes were differentially expressed in AD-induced rat neurons. Knocking down PHF1 could protect against neurite loss and alleviate cell injury in AD neurons. , down-regulation of PHF1 in AD models decreases GM metabolism levels and modulates the immunoinflammatory response in the brain.

CONCLUSION

This comprehensive identification of gene expression patterns contributes to a deeper understanding of the underlying pathological mechanisms driving AD pathogenesis. Furthermore, the risk model based on the nine-gene signature offers a promising theoretical foundation for developing individualized treatments for AD patients.

摘要

背景

在本研究中,我们提出了一种用于量化谷氨酰胺代谢(GM)的新系统,以提高阿尔茨海默病(AD)诊断和风险预测的有效性。

方法

利用单细胞RNA测序(scRNA-seq)分析全面评估GM的表达模式。应用加权基因共表达网络分析(WGCNA)算法研究与GM相关的最显著基因。随后,采用三种机器学习算法(Boruta、LASSO和支持向量机递归特征消除法(SVM-RFE))来识别与GM相关的特征基因并建立风险模型。根据该模型将患者分为高风险组和低风险组。此外,我们还探讨了不同风险水平的AD患者的生物学特性、不同的信号通路和免疫特征。最后,构建AD的[此处原文缺失部分内容]模型以验证特征基因的特性。

结果

scRNA-seq和批量转录组分析均显示AD患者的GM活性增加,特别是在某些细胞亚群(浆细胞样树突状细胞(pDC)、终末/效应辅助性T细胞(LTB)和浆细胞)中。GM评分较高的细胞与其他细胞类型的相互作用数量和强度更为显著。WGCNA算法鉴定出360个与GM相关的基因,并基于通过多种机器学习算法鉴定出的9个特征基因(ATP13A4、PIK3C2A、CD164、PHF1、CES2、PDGFB、LCOR、TMEM30A和PLXNA1)构建了风险评分,该评分对AD发病显示出可靠的诊断效力。基于这些特征基因的列线图、校准曲线和决策曲线分析(DCA)为AD患者提供了显著的临床益处。高风险AD患者表现出更高水平的免疫相关功能和通路、免疫细胞浸润增加以及免疫调节剂表达升高。逆转录定量聚合酶链反应(RT-qPCR)分析显示,9个特征基因中的大多数在AD诱导的大鼠神经元中差异表达。敲低PHF1可防止神经突丢失并减轻AD神经元中的细胞损伤。[此处原文缺失部分内容],AD模型中PHF1的下调降低了GM代谢水平并调节了大脑中的免疫炎症反应。

结论

这种对基因表达模式的全面识别有助于更深入地了解驱动AD发病机制的潜在病理机制。此外,基于九基因特征的风险模型为开发针对AD患者的个性化治疗提供了有前景的理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a19/10667556/4a5919aa96d5/fnagi-15-1275793-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验