Ren Xiaobin, Qiu Fengquan, Deng Wei, Fang Xiaochen, Wu Yiming, Yu Shengyu, Liu Xinyue, Grigorian Souren, Shi Jialin, Jie Jiansheng, Zhang Xiaohong, Zhang Xiujuan
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore.
ACS Nano. 2023 Dec 26;17(24):25175-25184. doi: 10.1021/acsnano.3c08135. Epub 2023 Dec 6.
Printable organic semiconducting single crystals (OSSCs) offer tantalizing opportunities for next-generation wearable electronics, but their development has been plagued by a long-standing yet inherent problem─spatially uncontrolled and stochastic nucleation events─which usually causes the formation of polycrystalline films and hence limited performance. Here, we report a convenient approach to precisely manipulate the elusive molecule nucleation process for high-throughput inkjet printing of OSSCs with record-high mobility. By engineering curvature of the contact line with a teardrop-shaped micropattern, molecule nucleation is elegantly anchored at the vertex of the topological structure, enabling formation of a single nucleus for the subsequent growth of OSSCs. Using this approach, we achieve patterned growth of 2,7-dioctyl[1]benzothieno[3,2-][1]benzothiophene single crystals, yielding a breakthrough for an organic field-effect transistor array with a high average mobility of 12.5 cm V s. These findings not only provide keen insights into controlling molecule nucleation kinetics but also offer opportunities for high-performance printed electronics.
可打印的有机半导体单晶(OSSCs)为下一代可穿戴电子产品提供了诱人的机遇,但其发展一直受到一个长期存在的固有问题的困扰——空间上不受控制的随机成核事件,这通常会导致多晶膜的形成,从而限制了性能。在此,我们报告了一种简便的方法,可精确控制难以捉摸的分子成核过程,以实现具有创纪录高迁移率的OSSCs的高通量喷墨打印。通过用泪滴形微图案设计接触线的曲率,分子成核被巧妙地锚定在拓扑结构的顶点,从而能够形成单个核,以供随后的OSSCs生长。使用这种方法,我们实现了2,7-二辛基[1]苯并噻吩并[3,2-][1]苯并噻吩单晶的图案化生长,为具有12.5 cm V s的高平均迁移率的有机场效应晶体管阵列带来了突破。这些发现不仅为控制分子成核动力学提供了深刻见解,也为高性能印刷电子学提供了机遇。