Diamond Joshua M, Anderson Michaela R, Cantu Edward, Clausen Emily S, Shashaty Michael G S, Kalman Laurel, Oyster Michelle, Crespo Maria M, Bermudez Christian A, Benvenuto Luke, Palmer Scott M, Snyder Laurie D, Hartwig Matthew G, Wille Keith, Hage Chadi, McDyer John F, Merlo Christian A, Shah Pali D, Orens Jonathan B, Dhillon Ghundeep S, Lama Vibha N, Patel Mrunal G, Singer Jonathan P, Hachem Ramsey R, Michelson Andrew P, Hsu Jesse, Russell Localio A, Christie Jason D
Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
J Heart Lung Transplant. 2024 Apr;43(4):633-641. doi: 10.1016/j.healun.2023.11.019. Epub 2023 Dec 6.
Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation. Accurate prediction of PGD risk could inform donor approaches and perioperative care planning. We sought to develop a clinically useful, generalizable PGD prediction model to aid in transplant decision-making.
We derived a predictive model in a prospective cohort study of subjects from 2012 to 2018, followed by a single-center external validation. We used regularized (lasso) logistic regression to evaluate the predictive ability of clinically available PGD predictors and developed a user interface for clinical application. Using decision curve analysis, we quantified the net benefit of the model across a range of PGD risk thresholds and assessed model calibration and discrimination.
The PGD predictive model included distance from donor hospital to recipient transplant center, recipient age, predicted total lung capacity, lung allocation score (LAS), body mass index, pulmonary artery mean pressure, sex, and indication for transplant; donor age, sex, mechanism of death, and donor smoking status; and interaction terms for LAS and donor distance. The interface allows for real-time assessment of PGD risk for any donor/recipient combination. The model offers decision-making net benefit in the PGD risk range of 10% to 75% in the derivation centers and 2% to 10% in the validation cohort, a range incorporating the incidence in that cohort.
We developed a clinically useful PGD predictive algorithm across a range of PGD risk thresholds to support transplant decision-making, posttransplant care, and enrich samples for PGD treatment trials.
原发性移植肺功能障碍(PGD)是肺移植术后早期发病和死亡的主要原因。准确预测PGD风险可为供体选择方法和围手术期护理计划提供依据。我们试图开发一种临床实用、可推广的PGD预测模型,以辅助移植决策。
我们在一项对2012年至2018年受试者的前瞻性队列研究中推导了一个预测模型,随后进行了单中心外部验证。我们使用正则化(套索)逻辑回归来评估临床可用的PGD预测指标的预测能力,并开发了一个用于临床应用的用户界面。使用决策曲线分析,我们在一系列PGD风险阈值范围内量化了模型的净效益,并评估了模型的校准和区分度。
PGD预测模型包括供体医院到受体移植中心的距离、受体年龄、预测的总肺容量、肺分配评分(LAS)、体重指数、肺动脉平均压、性别和移植指征;供体年龄、性别、死亡机制和供体吸烟状况;以及LAS和供体距离的交互项。该界面允许对任何供体/受体组合实时评估PGD风险。在推导中心,该模型在PGD风险范围为10%至75%时提供决策净效益,在验证队列中为2%至10%,该范围涵盖了该队列中的发病率。
我们开发了一种临床实用的PGD预测算法,适用于一系列PGD风险阈值,以支持移植决策、移植后护理,并为PGD治疗试验富集样本。