Suppr超能文献

适用于六个月以下巴基斯坦婴儿的身高-年龄和体重-年龄生长图表:使用多指标整群抽样数据的新型病例选择方法得出。

Height-for-age and weight-for-age growth charts for Pakistani infants under six months: derived from a novel case selection method using multiple indicator cluster survey data.

机构信息

NHRC, NIH (HRI) Research Centre, Shaikh Zayed Medical Complex, Lahore, Pakistan.

College of Statistical Sciences, University of the Punjab, Lahore, Pakistan.

出版信息

BMC Med Res Methodol. 2023 Dec 8;23(1):289. doi: 10.1186/s12874-023-02116-y.

Abstract

BACKGROUND

In the past two decades, there has been a growing recognition of the need to establish indigenous standards or reference growth charts, particularly following the WHO multicenter growth study in 2006. The availability of accurate and reliable growth charts is crucial for monitoring child health. The choice of an appropriate model for constructing growth charts depends on various data characteristics, including the distribution's tails and peak. While Pakistan has reported some reference growth charts, there is a notable absence of indigenous charts for children under two years of age, especially for infants aged 0-6 months who are exclusively breastfed. Additionally, acquiring data poses a significant challenge, particularly for low-income countries, as it demands substantial resources such as finances, time, and expertise. The Multiple Indicator Cluster Survey (MICS) constitutes a large-scale national survey conducted periodically in low-income countries under the auspices of UNICEF. In this study, we propose methods for generating selection variables utilizing the "Novel Case Selection Method," as previously published. Further our approach enables to select and fit appropriate model to the MICS data, selected, and to develop the standard growth charts.

METHODS

Out of the 11,478 children under 6 months of age included in MICS-6 (Pakistan), 3,655 children (1,831 males and 1,824 females) met the specified criteria and were selected using the "Novel Case Selection Method". The sample was distributed across provinces as follows: 841 (23.0%) from KPK, 1,464 (40.1%) from Punjab, 819 (22.4%) from Sindh, and 531 (14.5%) from Balochistan. This sample encompassed both rural (76.4%) and urban (23.6%) populations. Following data cleaning and outlier removal, a total of 3,540 records for weight (1,768 males and 1,772 females) and 3,515 records for height (1,759 males and 1,756 females) were ultimately available for the development of standard charts. The Bayesian Information Criterion (BIC) was employed to determine the optimal degrees of freedom for L, M, and S using RefCurv_0.4.2. Three families within the gamlss class-namely, Box Cox Cole and Green (BCCG), Box Cox T (BCT), and Box Cox Power Exponential (BCPE)-were applied, each with three smoothing techniques: penalized splines (ps), cubic splines (cs), and polynomial splines (poly). The best-fitted model was selected from these nine combinations based on the Akaike Information Criteria.

RESULTS

The Novel Case Selection Method yielded 3655 cases as per criteria. After cleaning the data, this method lead to selection of 3540 children for "weight for age" (W/A) and 3515 children for "height for age" (H/A). The "BCPE" family and "ps" as smoothing method proved to be best on AIC for all four curves, i.e. the W/A male, W/A female, H/A male, and H/A female. The optimum selected degrees of freedom for the curve "W/A", for both genders were (M = 1, L = 0, S = 0). The optimum degrees of freedom for H/A male were again (M = 1, L = 0, S = 0), but for females the selected degrees of freedom were (M = 1, L = 1, S = 1). The indigenous fitted standard curves for Pakistan were on lower trajectory in comparison to WHO standards.

CONCLUSION

This study uses the Novel Case Selection Method with introduced algorithms to construct tailored growth charts for lower and middle-income countries. Leveraging extensive MICS data, the methodology ensures representative national samples. The resulting charts hold practical value and await validation from established data sources, offering valuable tools for policy makers and clinicians in diverse global contexts.

摘要

背景

在过去的二十年中,人们越来越认识到需要建立本土标准或参考生长图表,特别是在 2006 年世界卫生组织多中心生长研究之后。准确可靠的生长图表对于监测儿童健康至关重要。选择合适的模型来构建生长图表取决于各种数据特征,包括分布的尾部和峰值。虽然巴基斯坦已经报告了一些参考生长图表,但对于两岁以下的儿童,特别是对于纯母乳喂养的 0-6 个月大的婴儿,仍然缺乏本土图表。此外,获取数据对于低收入国家来说是一个重大挑战,因为它需要大量资源,如财务、时间和专业知识。多指标类集调查(MICS)是在联合国儿童基金会的主持下定期在低收入国家进行的一项大型国家调查。在这项研究中,我们提出了利用之前发表的“新病例选择方法”生成选择变量的方法。此外,我们的方法还能够选择和适合 MICS 数据的适当模型,并开发标准生长图表。

方法

在 MICS-6(巴基斯坦)中纳入的 11478 名 6 个月以下的儿童中,有 3655 名儿童(男 1831 名,女 1824 名)符合指定标准,并使用“新病例选择方法”进行了选择。该样本分布在各省如下:开伯尔-普赫图赫瓦省 841 名(23.0%)、旁遮普省 1464 名(40.1%)、信德省 819 名(22.4%)和俾路支省 531 名(14.5%)。该样本包括农村(76.4%)和城市(23.6%)人口。经过数据清理和异常值去除后,最终有 3540 条体重记录(男 1768 条,女 1772 条)和 3515 条身高记录(男 1759 条,女 1756 条)可用于标准图表的开发。贝叶斯信息准则(BIC)用于确定 L、M 和 S 的最佳自由度,使用 RefCurv_0.4.2。gamlss 类中的三个家族-即 Box Cox Cole 和 Green(BCCG)、Box Cox T(BCT)和 Box Cox Power Exponential(BCPE)-应用了三种平滑技术:惩罚样条(ps)、三次样条(cs)和多项式样条(poly)。根据 Akaike 信息准则,从这九个组合中选择最佳拟合模型。

结果

新病例选择方法按照标准选择了 3655 例。在清理数据后,这种方法导致选择了 3540 名儿童进行“体重与年龄”(W/A)分析,3515 名儿童进行“身高与年龄”(H/A)分析。对于所有四个曲线,即 W/A 男性、W/A 女性、H/A 男性和 H/A 女性,“BCPE”家族和“ps”作为平滑方法在 AIC 上均为最佳。对于 W/A 男性和女性,曲线“W/A”的最佳选择自由度均为(M=1,L=0,S=0)。H/A 男性的最佳自由度再次为(M=1,L=0,S=0),但对于女性,选择的自由度为(M=1,L=1,S=1)。与世界卫生组织标准相比,巴基斯坦本土拟合标准曲线的轨迹较低。

结论

本研究使用新病例选择方法和引入的算法来构建适合中低收入国家的定制生长图表。利用广泛的 MICS 数据,该方法确保了具有代表性的全国样本。生成的图表具有实际价值,并等待来自既定数据源的验证,为不同全球背景下的政策制定者和临床医生提供了有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72e6/10709855/3e208ef72773/12874_2023_2116_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验