Suppr超能文献

建立和验证用于高甘油三酯血症性重症急性胰腺炎的早期预测模型。

Establishment and validation of early prediction model for hypertriglyceridemic severe acute pancreatitis.

机构信息

Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, 361004, P. R. China.

Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, 361004, P. R. China.

出版信息

Lipids Health Dis. 2023 Dec 8;22(1):218. doi: 10.1186/s12944-023-01984-z.

Abstract

BACKGROUND

The prevalence of hypertriglyceridaemia-induced acute pancreatitis (HTG-AP) is increasing due to improvements in living standards and dietary changes. However, currently, there is no clinical multifactor scoring system specific to HTG-AP. This study aimed to screen the predictors of HTG-SAP and combine several indicators to establish and validate a visual model for the early prediction of HTG-SAP.

METHODS

The clinical data of 266 patients with HTG-SAP were analysed. Patients were classified into severe (N = 42) and non-severe (N = 224) groups according to the Atlanta classification criteria. Several statistical analyses, including one-way analysis, least absolute shrinkage with selection operator (LASSO) regression model, and binary logistic regression analysis, were used to evaluate the data.

RESULTS

The univariate analysis showed that several factors showed no statistically significant differences, including the number of episodes of pancreatitis, abdominal pain score, and several blood diagnostic markers, such as lactate dehydrogenase (LDH), serum calcium (Ca), C-reactive protein (CRP), and the incidence of pleural effusion, between the two groups (P < 0.000). LASSO regression analysis identified six candidate predictors: CRP, LDH, Ca, procalcitonin (PCT), ascites, and Balthazar computed tomography grade. Binary logistic regression multivariate analysis showed that CRP, LDH, Ca, and ascites were independent predictors of HTG-SAP, and the area under the curve (AUC) values were 0.886, 0.893, 0.872, and 0.850, respectively. The AUC of the newly established HTG-SAP model was 0.960 (95% confidence interval: 0.936-0.983), which was higher than that of the bedside index for severity in acute pancreatitis (BISAP) score, modified CT severity index, Ranson score, and Japanese severity score (JSS) CT grade (AUC: 0.794, 0.796, 0.894 and 0.764, respectively). The differences were significant (P < 0.01), except for the JSS prognostic indicators (P = 0.130). The Hosmer-Lemeshow test showed that the predictive results of the model were highly consistent with the actual situation (P > 0.05). The decision curve analysis plot suggested that clinical intervention can benefit patients when the model predicts that they are at risk for developing HTG-SAP.

CONCLUSIONS

CRP, LDH, Ca, and ascites are independent predictors of HTG-SAP. The prediction model constructed based on these indicators has a high accuracy, sensitivity, consistency, and practicability in predicting HTG-SAP.

摘要

背景

随着生活水平的提高和饮食结构的改变,高甘油三酯血症诱导的急性胰腺炎(HTG-AP)的患病率正在增加。然而,目前尚无针对 HTG-AP 的临床多因素评分系统。本研究旨在筛选 HTG-SAP 的预测因子,并结合多个指标建立和验证 HTG-SAP 的早期预测可视化模型。

方法

分析了 266 例 HTG-SAP 患者的临床资料。根据亚特兰大分类标准,患者被分为重症(N=42)和非重症(N=224)两组。采用单因素分析、最小绝对收缩与选择算子(LASSO)回归模型和二项逻辑回归分析等多种统计分析方法对数据进行评估。

结果

单因素分析显示,两组间胰腺炎发作次数、腹痛评分以及乳酸脱氢酶(LDH)、血清钙(Ca)、C 反应蛋白(CRP)等多项血液诊断标志物,包括胸腔积液发生率,均无统计学差异(P<0.000)。LASSO 回归分析确定了 6 个候选预测因子:CRP、LDH、Ca、降钙素原(PCT)、腹水和 Balthazar 计算机断层扫描(CT)分级。二项逻辑回归多因素分析显示,CRP、LDH、Ca 和腹水是 HTG-SAP 的独立预测因子,曲线下面积(AUC)值分别为 0.886、0.893、0.872 和 0.850。新建立的 HTG-SAP 模型的 AUC 为 0.960(95%置信区间:0.936-0.983),高于床边严重程度指数用于急性胰腺炎(BISAP)评分、改良 CT 严重程度指数、Ranson 评分和日本严重程度评分 CT 分级(AUC:0.794、0.796、0.894 和 0.764)。差异有统计学意义(P<0.01),除了 JSS 预后指标(P=0.130)。Hosmer-Lemeshow 检验显示模型的预测结果与实际情况高度一致(P>0.05)。决策曲线分析图表明,当模型预测患者发生 HTG-SAP 的风险较高时,临床干预可使患者受益。

结论

CRP、LDH、Ca 和腹水是 HTG-SAP 的独立预测因子。基于这些指标构建的预测模型在预测 HTG-SAP 方面具有较高的准确性、敏感性、一致性和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c161/10709974/081b4304376a/12944_2023_1984_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验