Suppr超能文献

用于自动视频分割的果蝇心脏光学相干显微镜数据集。

A Drosophila heart optical coherence microscopy dataset for automatic video segmentation.

机构信息

Washington University in St. Louis, Department of Computer Science and Engineering, St. Louis, MO, 63130, USA.

Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, MO, 63130, USA.

出版信息

Sci Data. 2023 Dec 9;10(1):886. doi: 10.1038/s41597-023-02802-y.

Abstract

The heart of the fruit fly, Drosophila melanogaster, is a particularly suitable model for cardiac studies. Optical coherence microscopy (OCM) captures in vivo cross-sectional videos of the beating Drosophila heart for cardiac function quantification. To analyze those large-size multi-frame OCM recordings, human labelling has been employed, leading to low efficiency and poor reproducibility. Here, we introduce a robust and accurate automated Drosophila heart segmentation algorithm, called FlyNet 2.0+, which utilizes a long short-term memory (LSTM) convolutional neural network to leverage time series information in the videos, ensuring consistent, high-quality segmentation. We present a dataset of 213 Drosophila heart videos, equivalent to 604,000 cross-sectional images, containing all developmental stages and a wide range of beating patterns, including faster and slower than normal beating, arrhythmic beating, and periods of heart stop to capture these heart dynamics. Each video contains a corresponding ground truth mask. We expect this unique large dataset of the beating Drosophila heart in vivo will enable new deep learning approaches to efficiently characterize heart function to advance cardiac research.

摘要

果蝇的心脏是心脏研究的一个特别合适的模型。光学相干显微镜(OCM)可捕获活体果蝇跳动心脏的横截面视频,以进行心脏功能定量分析。为了分析这些大型多帧 OCM 记录,人们采用了人工标注的方法,这导致效率低下且重现性差。在这里,我们引入了一种强大而准确的自动果蝇心脏分割算法,称为 FlyNet 2.0+,它利用长短时记忆(LSTM)卷积神经网络利用视频中的时间序列信息,以确保一致、高质量的分割。我们提供了一个包含 213 个果蝇心脏视频的数据集,相当于 604000 个横截面图像,包含了所有发育阶段和广泛的跳动模式,包括比正常跳动更快和更慢、心律失常跳动以及心脏停止跳动的时期,以捕捉这些心脏动态。每个视频都包含一个相应的地面实况掩模。我们预计,这个独特的活体跳动果蝇心脏的大型数据集将使新的深度学习方法能够有效地对心脏功能进行特征描述,从而推进心脏研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验