Suppr超能文献

负载不同贵金属的CdS光催化剂中电子转移的动力学

Dynamics of Electron Transfer in CdS Photocatalysts Decorated with Various Noble Metals.

作者信息

Meng Zheng, Zhang Jianjun, Jiang Chenchen, Trapalis Christos, Zhang Liuyang, Yu Jiaguo

机构信息

Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China.

Materials Laboratory, Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Agia Paraskevi, Atttikis, 153 43, Greece.

出版信息

Small. 2024 May;20(21):e2308952. doi: 10.1002/smll.202308952. Epub 2023 Dec 10.

Abstract

To address charge recombination in photocatalysis, the prevalent approach involves the use of noble metal cocatalysts. However, the precise factors influencing this performance variability based on cocatalyst selection have remained elusive. In this study, CdS hollow spheres loaded with distinct noble metal nanoparticles (Pt, Au, and Ru) are investigated by femtosecond transient absorption (fs-TA) spectroscopy. A more pronounced internal electric field leads to the creation of a larger Schottky barrier, with the order Pt-CdS > Au-CdS > Ru-CdS. Owing to these varying Schottky barrier heights, the interface electron transfer rate (K) and efficiency (η) of metal-CdS in acetonitrile (ACN) exhibit the following trend: Ru-CdS > Au-CdS > Pt-CdS. However, the trends of K and η for metal-CdS in water are different (Ru-CdS > Pt-CdS > Au-CdS) due to the influence of water, leading to the consumption of photogenerated electrons and affecting the metal/CdS interface state. Although Ru-CdS displays the highest K and η, its overall photocatalytic performance, particularly in H production, lags behind that of Pt-CdS due to the electron backflow from Ru to CdS. This work offers a fresh perspective on the origin of performance differences and provides valuable insights for cocatalyst design and construction.

摘要

为了解决光催化中的电荷复合问题,普遍采用的方法是使用贵金属助催化剂。然而,基于助催化剂选择影响这种性能变化的精确因素仍然难以捉摸。在本研究中,通过飞秒瞬态吸收(fs-TA)光谱研究了负载不同贵金属纳米颗粒(Pt、Au和Ru)的CdS空心球。更强的内电场导致形成更大的肖特基势垒,顺序为Pt-CdS > Au-CdS > Ru-CdS。由于这些不同的肖特基势垒高度,金属-CdS在乙腈(ACN)中的界面电子转移速率(K)和效率(η)呈现以下趋势:Ru-CdS > Au-CdS > Pt-CdS。然而,由于水的影响,金属-CdS在水中的K和η趋势不同(Ru-CdS > Pt-CdS > Au-CdS),导致光生电子的消耗并影响金属/CdS界面状态。尽管Ru-CdS显示出最高的K和η,但由于电子从Ru回流到CdS,其整体光催化性能,特别是在产氢方面,落后于Pt-CdS。这项工作为性能差异的起源提供了新的视角,并为助催化剂的设计和构建提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验