Suppr超能文献

人工智能在肌肉骨骼超声中的应用:叙述性综述

Applications of artificial intelligence in musculoskeletal ultrasound: narrative review.

作者信息

Dinescu Stefan Cristian, Stoica Doru, Bita Cristina Elena, Nicoara Andreea-Iulia, Cirstei Mihaela, Staiculesc Maria-Alexandra, Vreju Florentin

机构信息

Department of Rheumatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania.

Physical Education and Sport Department, Motor Activities Theory and Methodology, Craiova University, Craiova, Romania.

出版信息

Front Med (Lausanne). 2023 Nov 21;10:1286085. doi: 10.3389/fmed.2023.1286085. eCollection 2023.

Abstract

Ultrasonography (US) has become a valuable imaging tool for the examination of the musculoskeletal system. It provides important diagnostic information and it can also be very useful in the assessment of disease activity and treatment response. US has gained widespread use in rheumatology practice because it provides real time and dynamic assessment, although it is dependent on the examiner's experience. The implementation of artificial intelligence (AI) techniques in the process of image recognition and interpretation has the potential to overcome certain limitations related to physician-dependent assessment, such as the variability in image acquisition. Multiple studies in the field of AI have explored how integrated machine learning algorithms could automate specific tissue recognition, diagnosis of joint and muscle pathology, and even grading of synovitis which is essential for monitoring disease activity. AI-based techniques applied in musculoskeletal US imaging focus on automated segmentation, image enhancement, detection and classification. AI-based US imaging can thus improve accuracy, time efficiency and offer a framework for standardization between different examinations. This paper will offer an overview of current research in the field of AI-based ultrasonography of the musculoskeletal system with focus on the applications of machine learning techniques in the examination of joints, muscles and peripheral nerves, which could potentially improve the performance of everyday clinical practice.

摘要

超声检查(US)已成为检查肌肉骨骼系统的一种有价值的成像工具。它提供重要的诊断信息,并且在评估疾病活动和治疗反应方面也非常有用。尽管超声检查依赖于检查者的经验,但它在风湿病学实践中已得到广泛应用,因为它能提供实时动态评估。人工智能(AI)技术在图像识别和解读过程中的应用有可能克服与依赖医生的评估相关的某些局限性,如图像采集的变异性。人工智能领域的多项研究探讨了集成机器学习算法如何能够实现特定组织识别、关节和肌肉病理学诊断以及滑膜炎分级(这对监测疾病活动至关重要)的自动化。应用于肌肉骨骼超声成像的基于人工智能的技术专注于自动分割、图像增强、检测和分类。基于人工智能的超声成像因此可以提高准确性、时间效率,并为不同检查之间的标准化提供一个框架。本文将概述基于人工智能的肌肉骨骼系统超声检查领域的当前研究,重点关注机器学习技术在关节、肌肉和周围神经检查中的应用,这有可能改善日常临床实践的表现。

相似文献

2
Artificial intelligence in musculoskeletal ultrasound imaging.人工智能在肌肉骨骼超声成像中的应用
Ultrasonography. 2021 Jan;40(1):30-44. doi: 10.14366/usg.20080. Epub 2020 Sep 6.
7
Artificial intelligence in ultrasound.人工智能在超声中的应用。
Eur J Radiol. 2021 Jun;139:109717. doi: 10.1016/j.ejrad.2021.109717. Epub 2021 Apr 12.

本文引用的文献

3
Assisted probe guidance in cardiac ultrasound: A review.心脏超声中的辅助探头引导:综述
Front Cardiovasc Med. 2023 Feb 14;10:1056055. doi: 10.3389/fcvm.2023.1056055. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验