Suppr超能文献

用于从高度损坏的数据中稳健学习非线性动力系统的自适应积分交替最小化方法。

Adaptive integral alternating minimization method for robust learning of nonlinear dynamical systems from highly corrupted data.

作者信息

Zhang Tao, Liu Guang, Wang Li, Lu Zhong-Rong

机构信息

School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China.

Shenzhen Key Laboratory of Intelligent Microsatellite Constellation, Shenzhen, Guangdong 518107, People's Republic of China.

出版信息

Chaos. 2023 Dec 1;33(12). doi: 10.1063/5.0167914.

Abstract

This paper proposes an adaptive integral alternating minimization method (AIAMM) for learning nonlinear dynamical systems using highly corrupted measured data. This approach selects and identifies the system directly from noisy data using the integral model, encompassing unknown sparse coefficients, initial values, and outlier noisy data within the learning problem. It is defined as a sparse robust linear regression problem. An adaptive threshold parameter selection method is proposed to constrain model fitting errors and select appropriate threshold parameters for sparsity. The robustness and accuracy of the proposed AIAMM are demonstrated through several numerical experiments on typical nonlinear dynamical systems, including the van der Pol oscillator, Mathieu oscillator, Lorenz system, and 5D self-exciting homopolar disc dynamo. The proposed method is also compared to several advanced methods for sparse recovery, with the results indicating that the AIAMM demonstrates superior performance in processing highly corrupted data.

摘要

本文提出了一种自适应积分交替最小化方法(AIAMM),用于使用高度 corrupted 的测量数据学习非线性动力系统。该方法使用积分模型直接从噪声数据中选择并识别系统,将未知的稀疏系数、初始值和异常噪声数据纳入学习问题。它被定义为一个稀疏鲁棒线性回归问题。提出了一种自适应阈值参数选择方法来约束模型拟合误差,并为稀疏性选择合适的阈值参数。通过对典型非线性动力系统(包括范德波尔振荡器、马蒂厄振荡器、洛伦兹系统和 5 维自激单极盘式发电机)进行的几个数值实验,证明了所提出的 AIAMM 的鲁棒性和准确性。还将所提出的方法与几种先进的稀疏恢复方法进行了比较,结果表明 AIAMM 在处理高度 corrupted 数据方面表现出卓越的性能。

相似文献

3
Online real-time learning of dynamical systems from noisy streaming data.
Sci Rep. 2023 Dec 19;13(1):22564. doi: 10.1038/s41598-023-49045-w.
5
Sparse model selection via integral terms.
Phys Rev E. 2017 Aug;96(2-1):023302. doi: 10.1103/PhysRevE.96.023302. Epub 2017 Aug 2.
6
Robust Alternating Low-Rank Representation by joint L- and L-norm minimization.
Neural Netw. 2017 Dec;96:55-70. doi: 10.1016/j.neunet.2017.08.001. Epub 2017 Sep 14.
7
Discovery of nonlinear dynamical systems using a Runge-Kutta inspired dictionary-based sparse regression approach.
Proc Math Phys Eng Sci. 2022 Jun;478(2262):20210883. doi: 10.1098/rspa.2021.0883. Epub 2022 Jun 22.
9
Dynamical system of a time-delayed ϕ-Van der Pol oscillator: a non-perturbative approach.
Sci Rep. 2023 Jul 24;13(1):11942. doi: 10.1038/s41598-023-38679-5.
10
Discovering governing equations from data by sparse identification of nonlinear dynamical systems.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):3932-7. doi: 10.1073/pnas.1517384113. Epub 2016 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验