Schaeffer Hayden, McCalla Scott G
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA and Department of Mathematical Sciences, Montana State University, Bozeman, Montana, 59717, USA.
Phys Rev E. 2017 Aug;96(2-1):023302. doi: 10.1103/PhysRevE.96.023302. Epub 2017 Aug 2.
Model selection and parameter estimation are important for the effective integration of experimental data, scientific theory, and precise simulations. In this work, we develop a learning approach for the selection and identification of a dynamical system directly from noisy data. The learning is performed by extracting a small subset of important features from an overdetermined set of possible features using a nonconvex sparse regression model. The sparse regression model is constructed to fit the noisy data to the trajectory of the dynamical system while using the smallest number of active terms. Computational experiments detail the model's stability, robustness to noise, and recovery accuracy. Examples include nonlinear equations, population dynamics, chaotic systems, and fast-slow systems.
模型选择和参数估计对于有效整合实验数据、科学理论及精确模拟至关重要。在这项工作中,我们开发了一种学习方法,用于直接从噪声数据中选择和识别动态系统。通过使用非凸稀疏回归模型从一组超定的可能特征中提取一小部分重要特征来进行学习。构建稀疏回归模型是为了在使用最少数量的有效项的同时,使噪声数据拟合动态系统的轨迹。计算实验详细说明了该模型的稳定性、对噪声的鲁棒性以及恢复精度。示例包括非线性方程、种群动态、混沌系统和快慢系统。