Goyal Pawan, Benner Peter
Max Planck Institute for Dynamics of Complex Technical Systems, Standtorstraße 1, 39106 Magdeburg, Germany.
Proc Math Phys Eng Sci. 2022 Jun;478(2262):20210883. doi: 10.1098/rspa.2021.0883. Epub 2022 Jun 22.
In this work, we blend machine learning and dictionary-based learning with numerical analysis tools to discover differential equations from noisy and sparsely sampled measurement data of time-dependent processes. We use the fact that given a dictionary containing large candidate nonlinear functions, dynamical models can often be described by a few appropriately chosen basis functions. As a result, we obtain parsimonious models that can be better interpreted by practitioners, and potentially generalize better beyond the sampling regime than black-box modelling. In this work, we integrate a numerical integration framework with dictionary learning that yields differential equations without requiring or approximating derivative information at any stage. Hence, it is utterly effective for corrupted and sparsely sampled data. We discuss its extension to governing equations, containing rational nonlinearities that typically appear in biological networks. Moreover, we generalized the method to governing equations subject to parameter variations and externally controlled inputs. We demonstrate the efficiency of the method to discover a number of diverse differential equations using noisy measurements, including a model describing neural dynamics, chaotic Lorenz model, Michaelis-Menten kinetics and a parameterized Hopf normal form.
在这项工作中,我们将机器学习、基于字典的学习与数值分析工具相结合,以便从随时间变化过程的噪声和稀疏采样测量数据中发现微分方程。我们利用这样一个事实:给定一个包含大量候选非线性函数的字典,动力学模型通常可以由几个适当选择的基函数来描述。因此,我们得到了简洁的模型,实践者可以更好地对其进行解释,并且与黑箱建模相比,在采样范围之外可能具有更好的泛化能力。在这项工作中,我们将一个数值积分框架与字典学习相结合,该框架可以生成微分方程,而在任何阶段都不需要或近似导数信息。因此,它对于损坏和稀疏采样的数据非常有效。我们讨论了将其扩展到包含生物网络中通常出现的有理非线性的控制方程。此外,我们将该方法推广到受参数变化和外部控制输入影响的控制方程。我们展示了该方法利用噪声测量发现多种不同微分方程的效率,包括一个描述神经动力学的模型、混沌洛伦兹模型、米氏动力学和一个参数化的霍普夫范式。