Suppr超能文献

基于磁共振成像的视神经胶质瘤患儿自动视力丧失预测

Automatic Visual Acuity Loss Prediction in Children with Optic Pathway Gliomas using Magnetic Resonance Imaging.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-5. doi: 10.1109/EMBC40787.2023.10339961.

Abstract

Children with optic pathway gliomas (OPGs), a low-grade brain tumor associated with neurofibromatosis type 1 (NF1-OPG), are at risk for permanent vision loss. While OPG size has been associated with vision loss, it is unclear how changes in size, shape, and imaging features of OPGs are associated with the likelihood of vision loss. This paper presents a fully automatic framework for accurate prediction of visual acuity loss using multi-sequence magnetic resonance images (MRIs). Our proposed framework includes a transformer-based segmentation network using transfer learning, statistical analysis of radiomic features, and a machine learning method for predicting vision loss. Our segmentation network was evaluated on multi-sequence MRIs acquired from 75 pediatric subjects with NF1-OPG and obtained an average Dice similarity coefficient of 0.791. The ability to predict vision loss was evaluated on a subset of 25 subjects with ground truth using cross-validation and achieved an average accuracy of 0.8. Analyzing multiple MRI features appear to be good indicators of vision loss, potentially permitting early treatment decisions.Clinical relevance- Accurately determining which children with NF1-OPGs are at risk and hence require preventive treatment before vision loss remains challenging, towards this we present a fully automatic deep learning-based framework for vision outcome prediction, potentially permitting early treatment decisions.

摘要

患有视神经胶质瘤(OPG)的儿童,一种与神经纤维瘤病 1 型(NF1-OPG)相关的低级脑肿瘤,存在永久性视力丧失的风险。虽然 OPG 的大小与视力丧失有关,但尚不清楚 OPG 的大小、形状和成像特征的变化如何与视力丧失的可能性相关。本文提出了一种使用多序列磁共振成像(MRI)准确预测视力丧失的全自动框架。我们提出的框架包括使用迁移学习的基于变压器的分割网络、放射组学特征的统计分析以及用于预测视力丧失的机器学习方法。我们的分割网络在从 75 名患有 NF1-OPG 的儿科患者中获得的多序列 MRI 上进行了评估,平均 Dice 相似系数为 0.791。使用交叉验证对具有真实数据的 25 名患者子集进行了视力丧失预测能力的评估,平均准确率为 0.8。分析多个 MRI 特征似乎是视力丧失的良好指标,这可能允许进行早期治疗决策。临床意义-准确确定哪些患有 NF1-OPG 的儿童存在风险,因此需要在视力丧失之前进行预防性治疗仍然具有挑战性,为此,我们提出了一种基于深度学习的全自动框架,用于预测视力结果,从而可能允许进行早期治疗决策。

相似文献

1
Automatic Visual Acuity Loss Prediction in Children with Optic Pathway Gliomas using Magnetic Resonance Imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-5. doi: 10.1109/EMBC40787.2023.10339961.
2
Optic Pathway Gliomas in Neurofibromatosis Type 1: An Update: Surveillance, Treatment Indications, and Biomarkers of Vision.
J Neuroophthalmol. 2017 Sep;37 Suppl 1(Suppl 1):S23-S32. doi: 10.1097/WNO.0000000000000550.
4
Optic pathway gliomas in patients with neurofibromatosis type 1: follow-up of 44 patients.
J AAPOS. 2010 Apr;14(2):155-8. doi: 10.1016/j.jaapos.2009.11.020.
5
The Use of Magnetic Resonance Imaging Screening for Optic Pathway Gliomas in Children with Neurofibromatosis Type 1.
J Pediatr. 2015 Oct;167(4):851-856.e1. doi: 10.1016/j.jpeds.2015.07.001. Epub 2015 Jul 29.
6
Optic pathway glioma volume predicts retinal axon degeneration in neurofibromatosis type 1.
Neurology. 2016 Dec 6;87(23):2403-2407. doi: 10.1212/WNL.0000000000003402. Epub 2016 Nov 4.
7
Insights into optic pathway glioma vision loss from mouse models of neurofibromatosis type 1.
J Neurosci Res. 2019 Jan;97(1):45-56. doi: 10.1002/jnr.24250. Epub 2018 Apr 28.
10
Vision specific quality of life in children with optic pathway gliomas.
J Neurooncol. 2014 Jan;116(2):341-7. doi: 10.1007/s11060-013-1300-6. Epub 2013 Nov 7.

本文引用的文献

1
The Medical Segmentation Decathlon.
Nat Commun. 2022 Jul 15;13(1):4128. doi: 10.1038/s41467-022-30695-9.
2
Radiomics and radiogenomics in pediatric neuro-oncology: A review.
Neurooncol Adv. 2022 May 27;4(1):vdac083. doi: 10.1093/noajnl/vdac083. eCollection 2022 Jan-Dec.
3
Unsupervised MRI Homogenization: Application to Pediatric Anterior Visual Pathway Segmentation.
Mach Learn Med Imaging. 2020 Oct;12436:180-188. doi: 10.1007/978-3-030-59861-7_19. Epub 2020 Sep 29.
5
Predicting pediatric optic pathway glioma progression using advanced magnetic resonance image analysis and machine learning.
Neurooncol Adv. 2020 Aug 1;2(1):vdaa090. doi: 10.1093/noajnl/vdaa090. eCollection 2020 Jan-Dec.
6
Radiomics in medical imaging-"how-to" guide and critical reflection.
Insights Imaging. 2020 Aug 12;11(1):91. doi: 10.1186/s13244-020-00887-2.
7
Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers.
Biomed Opt Express. 2018 Jun 11;9(7):3049-3066. doi: 10.1364/BOE.9.003049. eCollection 2018 Jul 1.
8
Computational Radiomics System to Decode the Radiographic Phenotype.
Cancer Res. 2017 Nov 1;77(21):e104-e107. doi: 10.1158/0008-5472.CAN-17-0339.
10
Optic Pathway Gliomas in Neurofibromatosis Type 1: An Update: Surveillance, Treatment Indications, and Biomarkers of Vision.
J Neuroophthalmol. 2017 Sep;37 Suppl 1(Suppl 1):S23-S32. doi: 10.1097/WNO.0000000000000550.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验