Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-5. doi: 10.1109/EMBC40787.2023.10339961.
Children with optic pathway gliomas (OPGs), a low-grade brain tumor associated with neurofibromatosis type 1 (NF1-OPG), are at risk for permanent vision loss. While OPG size has been associated with vision loss, it is unclear how changes in size, shape, and imaging features of OPGs are associated with the likelihood of vision loss. This paper presents a fully automatic framework for accurate prediction of visual acuity loss using multi-sequence magnetic resonance images (MRIs). Our proposed framework includes a transformer-based segmentation network using transfer learning, statistical analysis of radiomic features, and a machine learning method for predicting vision loss. Our segmentation network was evaluated on multi-sequence MRIs acquired from 75 pediatric subjects with NF1-OPG and obtained an average Dice similarity coefficient of 0.791. The ability to predict vision loss was evaluated on a subset of 25 subjects with ground truth using cross-validation and achieved an average accuracy of 0.8. Analyzing multiple MRI features appear to be good indicators of vision loss, potentially permitting early treatment decisions.Clinical relevance- Accurately determining which children with NF1-OPGs are at risk and hence require preventive treatment before vision loss remains challenging, towards this we present a fully automatic deep learning-based framework for vision outcome prediction, potentially permitting early treatment decisions.
患有视神经胶质瘤(OPG)的儿童,一种与神经纤维瘤病 1 型(NF1-OPG)相关的低级脑肿瘤,存在永久性视力丧失的风险。虽然 OPG 的大小与视力丧失有关,但尚不清楚 OPG 的大小、形状和成像特征的变化如何与视力丧失的可能性相关。本文提出了一种使用多序列磁共振成像(MRI)准确预测视力丧失的全自动框架。我们提出的框架包括使用迁移学习的基于变压器的分割网络、放射组学特征的统计分析以及用于预测视力丧失的机器学习方法。我们的分割网络在从 75 名患有 NF1-OPG 的儿科患者中获得的多序列 MRI 上进行了评估,平均 Dice 相似系数为 0.791。使用交叉验证对具有真实数据的 25 名患者子集进行了视力丧失预测能力的评估,平均准确率为 0.8。分析多个 MRI 特征似乎是视力丧失的良好指标,这可能允许进行早期治疗决策。临床意义-准确确定哪些患有 NF1-OPG 的儿童存在风险,因此需要在视力丧失之前进行预防性治疗仍然具有挑战性,为此,我们提出了一种基于深度学习的全自动框架,用于预测视力结果,从而可能允许进行早期治疗决策。