Suppr超能文献

使用先进的磁共振图像分析和机器学习预测儿童视路胶质瘤的进展

Predicting pediatric optic pathway glioma progression using advanced magnetic resonance image analysis and machine learning.

作者信息

Pisapia Jared M, Akbari Hamed, Rozycki Martin, Thawani Jayesh P, Storm Phillip B, Avery Robert A, Vossough Arastoo, Fisher Michael J, Heuer Gregory G, Davatzikos Christos

机构信息

Department of Neurosurgery, Maria Fareri Children's Hospital, Westchester Medical Center, Valhalla, New York, USA.

Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Neurooncol Adv. 2020 Aug 1;2(1):vdaa090. doi: 10.1093/noajnl/vdaa090. eCollection 2020 Jan-Dec.

Abstract

BACKGROUND

Optic pathway gliomas (OPGs) are low-grade tumors of the white matter of the visual system with a highly variable clinical course. The aim of the study was to generate a magnetic resonance imaging (MRI)-based predictive model of OPG tumor progression using advanced image analysis and machine learning techniques.

METHODS

We performed a retrospective case-control study of OPG patients managed between 2009 and 2015 at an academic children's hospital. Progression was defined as radiographic tumor growth or vision decline. To generate the model, optic nerves were manually highlighted and optic radiations (ORs) were segmented using diffusion tractography tools. For each patient, intensity distributions were obtained from within the segmented regions on all imaging sequences, including derivatives of diffusion tensor imaging (DTI). A machine learning algorithm determined the combination of features most predictive of progression.

RESULTS

Nineteen OPG patients with progression were matched to 19 OPG patients without progression. The mean time between most recent follow-up and most recently analyzed MRI was 3.5 ± 1.7 years. Eighty-three MRI studies and 532 extracted features were included. The predictive model achieved an accuracy of 86%, sensitivity of 89%, and specificity of 81%. Fractional anisotropy of the ORs was among the most predictive features (area under the curve 0.83, < 0.05).

CONCLUSIONS

Our findings show that image analysis and machine learning can be applied to OPGs to generate a MRI-based predictive model with high accuracy. As OPGs grow along the visual pathway, the most predictive features relate to white matter changes as detected by DTI, especially within ORs.

摘要

背景

视路胶质瘤(OPG)是视觉系统白质的低度恶性肿瘤,临床病程高度可变。本研究的目的是使用先进的图像分析和机器学习技术生成基于磁共振成像(MRI)的OPG肿瘤进展预测模型。

方法

我们对2009年至2015年在一家学术儿童医院接受治疗的OPG患者进行了一项回顾性病例对照研究。进展定义为影像学上的肿瘤生长或视力下降。为了生成模型,手动突出显示视神经,并使用扩散张量成像工具对视放射(OR)进行分割。对于每位患者,在所有成像序列的分割区域内获取强度分布,包括扩散张量成像(DTI)的衍生物。一种机器学习算法确定了最能预测进展的特征组合。

结果

19例有进展的OPG患者与19例无进展的OPG患者相匹配。最近一次随访与最近分析的MRI之间的平均时间为3.5±1.7年。纳入了83项MRI研究和532个提取的特征。预测模型的准确率为86%,灵敏度为89%,特异性为81%。OR的分数各向异性是最具预测性的特征之一(曲线下面积为0.83,<0.05)。

结论

我们的研究结果表明,图像分析和机器学习可应用于OPG,以生成具有高准确率的基于MRI的预测模型。由于OPG沿视觉通路生长,最具预测性的特征与DTI检测到的白质变化有关,尤其是在OR内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee9/7455885/f3648aa7ddc1/vdaa090f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验