Suppr超能文献

补丁大小和网络架构对用于光学相干断层扫描视网膜层自动分割的卷积神经网络方法的影响。

Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers.

作者信息

Hamwood Jared, Alonso-Caneiro David, Read Scott A, Vincent Stephen J, Collins Michael J

机构信息

Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

Biomed Opt Express. 2018 Jun 11;9(7):3049-3066. doi: 10.1364/BOE.9.003049. eCollection 2018 Jul 1.

Abstract

Deep learning strategies, particularly convolutional neural networks (CNNs), are especially suited to finding patterns in images and using those patterns for image classification. The method is normally applied to an image patch and assigns a class weight to the patch; this method has recently been used to detect the probability of retinal boundary locations in OCT images, which is subsequently used to segment the OCT image using a graph-search approach. This paper examines the effects of a number of modifications to the CNN architecture with the aim of optimizing retinal layer segmentation, specifically the effect of patch size as well as the network architecture design on CNN performance and subsequent layer segmentation. The results demonstrate that increasing patch size can improve the performance of the classification and provides a more reliable segmentation in the analysis of retinal layer characteristics in OCT imaging. Similarly, this work shows that changing aspects of the CNN network design can also significantly improve the segmentation results. This work also demonstrates that the performance of the method can change depending on the number of classes (i.e. boundaries) used to train the CNN, with fewer classes showing an inferior performance due to the presence of similar image features between classes that can trigger false positives. Changes in the network (patch size and or architecture) can be applied to provide a superior segmentation performance, which is robust to the class effect. The findings from this work may inform future CNN development in OCT retinal image analysis.

摘要

深度学习策略,尤其是卷积神经网络(CNN),特别适合于在图像中寻找模式并将这些模式用于图像分类。该方法通常应用于图像块,并为该图像块分配一个类别权重;最近该方法已被用于检测光学相干断层扫描(OCT)图像中视网膜边界位置的概率,随后使用图搜索方法对OCT图像进行分割。本文研究了对CNN架构进行的一些修改的效果,目的是优化视网膜层分割,特别是图像块大小以及网络架构设计对CNN性能和后续层分割的影响。结果表明,增加图像块大小可以提高分类性能,并在OCT成像中视网膜层特征分析中提供更可靠的分割。同样,这项工作表明改变CNN网络设计的各个方面也可以显著改善分割结果。这项工作还表明,该方法的性能可能会因用于训练CNN的类别(即边界)数量而有所不同,由于类别之间存在可能触发误报的相似图像特征,较少的类别表现较差。网络(图像块大小和/或架构)的改变可以应用于提供卓越的分割性能,这种性能对类别效应具有鲁棒性。这项工作的发现可能会为未来OCT视网膜图像分析中的CNN发展提供参考。

相似文献

1
Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers.
Biomed Opt Express. 2018 Jun 11;9(7):3049-3066. doi: 10.1364/BOE.9.003049. eCollection 2018 Jul 1.
2
Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search.
Biomed Opt Express. 2018 Oct 26;9(11):5759-5777. doi: 10.1364/BOE.9.005759. eCollection 2018 Nov 1.
3
Patch-based CNN for corneal segmentation of AS-OCT images: Effect of the number of classes and image quality upon performance.
Comput Biol Med. 2023 Jan;152:106342. doi: 10.1016/j.compbiomed.2022.106342. Epub 2022 Nov 30.
5
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.
6
Automatic choroidal segmentation in OCT images using supervised deep learning methods.
Sci Rep. 2019 Sep 16;9(1):13298. doi: 10.1038/s41598-019-49816-4.
7
OCT Retinal and Choroidal Layer Instance Segmentation Using Mask R-CNN.
Sensors (Basel). 2022 Mar 4;22(5):2016. doi: 10.3390/s22052016.
9
Automatic Classification of Macular Diseases from OCT Images Using CNN Guided with Edge Convolutional Layer.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3858-3861. doi: 10.1109/EMBC48229.2022.9871322.
10
Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
Comput Methods Programs Biomed. 2019 Jul;176:69-80. doi: 10.1016/j.cmpb.2019.04.027. Epub 2019 Apr 24.

引用本文的文献

2
Automatic Visual Acuity Loss Prediction in Children with Optic Pathway Gliomas using Magnetic Resonance Imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-5. doi: 10.1109/EMBC40787.2023.10339961.
5
Enhanced Deep Learning Model for Classification of Retinal Optical Coherence Tomography Images.
Sensors (Basel). 2023 Jun 7;23(12):5393. doi: 10.3390/s23125393.
6
AI-based MRI auto-segmentation of brain tumor in rodents, a multicenter study.
Acta Neuropathol Commun. 2023 Jan 14;11(1):11. doi: 10.1186/s40478-023-01509-w.
7
FAPNET: Feature Fusion with Adaptive Patch for Flood-Water Detection and Monitoring.
Sensors (Basel). 2022 Oct 27;22(21):8245. doi: 10.3390/s22218245.
9
Retinal thickness in healthy Australian Aboriginal and Torres Strait Islander children.
PLoS One. 2022 Aug 30;17(8):e0273863. doi: 10.1371/journal.pone.0273863. eCollection 2022.
10
Intraretinal Layer Segmentation Using Cascaded Compressed U-Nets.
J Imaging. 2022 May 17;8(5):139. doi: 10.3390/jimaging8050139.

本文引用的文献

1
Automatic detection of the foveal center in optical coherence tomography.
Biomed Opt Express. 2017 Oct 23;8(11):5160-5178. doi: 10.1364/BOE.8.005160. eCollection 2017 Nov 1.
2
Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy.
Biomed Opt Express. 2017 Aug 10;8(9):4061-4076. doi: 10.1364/BOE.8.004061. eCollection 2017 Sep 1.
4
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.
6
Algorithms for the Automated Analysis of Age-Related Macular Degeneration Biomarkers on Optical Coherence Tomography: A Systematic Review.
Transl Vis Sci Technol. 2017 Jul 18;6(4):10. doi: 10.1167/tvst.6.4.10. eCollection 2017 Jul.
7
Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks.
Biomed Opt Express. 2017 Jun 16;8(7):3292-3316. doi: 10.1364/BOE.8.003292. eCollection 2017 Jul 1.
8
Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited].
Biomed Opt Express. 2017 Jun 15;8(7):3248-3280. doi: 10.1364/BOE.8.003248. eCollection 2017 Jul 1.
9
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.
10
Longitudinal changes in macular retinal layer thickness in pediatric populations: Myopic vs non-myopic eyes.
PLoS One. 2017 Jun 29;12(6):e0180462. doi: 10.1371/journal.pone.0180462. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验