MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China.
Textile Intelligent Manufacture, Jiangnan University, Wuxi 214122, China.
ACS Appl Mater Interfaces. 2023 Dec 27;15(51):59989-60001. doi: 10.1021/acsami.3c16532. Epub 2023 Dec 12.
Flexible actuators have garnered significant interest in the domains of biomedical devices, human-machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm), and fast response (264 cN s and 46.61 cm s). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.
柔性致动器在生物医学设备、人机界面和智能可穿戴设备等领域引起了极大的关注。然而,现有材料的机械性能不够强大,昂贵且耗时的预处理过程以及高自由度变形机制不明确,这使得它们难以满足工业化生产的需求。因此,本研究受自然界中生物体适应性运动的启发,使用高性价比的粘胶/PET 纤维作为原材料,设计并制造了一种全纺织基湿度敏感柔性致动器(TbHs-FA)。文中介绍了致动性能的突破性发展,包括较大的收缩力(92.53 cN)、高致动曲率(16.78 cm)和快速响应(264 cN s 和 46.61 cm s)。此外,可编程的刚度系统和编织结构使 TbHs-FAs 具有较低的滞后性和疲劳性,缩小了现有全纺织基湿度敏感柔性致动器概念实验室规模设计与实际纺织品之间的差距。通过结合微观机械结构模拟和宏观能量转换分析,首次阐明了 TbHs-FAs 的高自由度和大弯曲变形机制。新型湿度敏感柔性致动器具有较强的机械性能,适用于柔性机器人、医疗设备和智能可穿戴设备等应用。