Suppr超能文献

构建整合 ctDNA 的风险分层模型,预测新辅助治疗乳腺癌的反应和生存。

Construction of a risk stratification model integrating ctDNA to predict response and survival in neoadjuvant-treated breast cancer.

机构信息

Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.

Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.

出版信息

BMC Med. 2023 Dec 12;21(1):493. doi: 10.1186/s12916-023-03163-4.

Abstract

BACKGROUND

The pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) of breast cancer is closely related to a better prognosis. However, there are no reliable indicators to accurately identify which patients will achieve pCR before surgery, and a model for predicting pCR to NAC is required.

METHODS

A total of 269 breast cancer patients in Shandong Cancer Hospital and Liaocheng People's Hospital receiving anthracycline and taxane-based NAC were prospectively enrolled. Expression profiling using a 457 cancer-related gene sequencing panel (DNA sequencing) covering genes recurrently mutated in breast cancer was carried out on 243 formalin-fixed paraffin-embedded tumor biopsies samples before NAC from 243 patients. The unique personalized panel of nine individual somatic mutation genes from the constructed model was used to detect and analyze ctDNA on 216 blood samples. Blood samples were collected at indicated time points including before chemotherapy initiation, after the 1 NAC and before the 2 NAC cycle, during intermediate evaluation, and prior to surgery. In this study, we characterized the value of gene profile mutation and circulating tumor DNA (ctDNA) in combination with clinical characteristics in the prediction of pCR before surgery and investigated the prognostic prediction. The median follow-up time for survival analysis was 898 days.

RESULTS

Firstly, we constructed a predictive NAC response model including five single nucleotide variant (SNV) mutations (TP53, SETBP1, PIK3CA, NOTCH4 and MSH2) and four copy number variation (CNV) mutations (FOXP1-gain, EGFR-gain, IL7R-gain, and NFKB1A-gain) in the breast tumor, combined with three clinical factors (luminal A, Her2 and Ki67 status). The tumor prediction model showed good discrimination of chemotherapy sensitivity for pCR and non-pCR with an AUC of 0.871 (95% CI, 0.797-0.927) in the training set, 0.771 (95% CI, 0.649-0.883) in the test set, and 0.726 (95% CI, 0.556-0.865) in an extra test set. This tumor prediction model can also effectively predict the prognosis of disease-free survival (DFS) with an AUC of 0.749 at 1 year and 0.830 at 3 years. We further screened the genes from the tumor prediction model to establish a unique personalized panel consisting of 9 individual somatic mutation genes to detect and analyze ctDNA. It was found that ctDNA positivity decreased with the passage of time during NAC, and ctDNA status can predict NAC response and metastasis recurrence. Finally, we constructed the chemotherapy prediction model combined with the tumor prediction model and pretreatment ctDNA levels, which has a better prediction effect of pCR with the AUC value of 0.961.

CONCLUSIONS

In this study, we established a chemotherapy predictive model with a non-invasive tool that is built based on genomic features, ctDNA status, as well as clinical characteristics for predicting pCR to recognize the responders and non-responders to NAC, and also predicting prognosis for DFS in breast cancer. Adding pretreatment ctDNA levels to a model containing gene profile mutation and clinical characteristics significantly improves stratification over the clinical variables alone.

摘要

背景

乳腺癌新辅助化疗(NAC)的病理完全缓解(pCR)与更好的预后密切相关。然而,目前尚无可靠的指标能够准确识别哪些患者在术前将达到 pCR,因此需要建立预测 NAC 反应的模型。

方法

前瞻性纳入 269 例在山东省肿瘤医院和聊城市人民医院接受蒽环类和紫杉类药物为基础的 NAC 的乳腺癌患者。对 243 例患者的 243 例福尔马林固定石蜡包埋肿瘤活检样本在 NAC 前进行了 457 个癌症相关基因测序面板(DNA 测序)的表达谱分析,该面板涵盖了乳腺癌中反复突变的基因。使用从构建模型中获得的 9 个个体体细胞突变基因的独特个性化面板,对 216 份血液样本进行检测和分析。在 NAC 开始前、1 次 NAC 后和 2 次 NAC 周期前、中期评估时以及手术前采集血液样本。在这项研究中,我们结合临床特征,描述了基因谱突变和循环肿瘤 DNA(ctDNA)在预测术前 pCR 中的价值,并对预后进行了预测。生存分析的中位随访时间为 898 天。

结果

首先,我们构建了一个包含五个单核苷酸变异(SNV)突变(TP53、SETBP1、PIK3CA、NOTCH4 和 MSH2)和四个拷贝数变异(CNV)突变(FOXP1-增益、EGFR-增益、IL7R-增益和 NFKB1A-增益)的预测 NAC 反应模型,结合三个临床因素(管腔 A、Her2 和 Ki67 状态)。肿瘤预测模型在训练集、测试集和额外测试集中,对 pCR 和非 pCR 的化疗敏感性均具有良好的区分能力,AUC 值分别为 0.871(95%CI,0.797-0.927)、0.771(95%CI,0.649-0.883)和 0.726(95%CI,0.556-0.865)。该肿瘤预测模型还可以有效地预测无病生存(DFS)的预后,1 年和 3 年的 AUC 值分别为 0.749 和 0.830。我们进一步从肿瘤预测模型中筛选基因,建立了一个由 9 个个体体细胞突变基因组成的独特个性化面板,用于检测和分析 ctDNA。结果发现,ctDNA 阳性率在 NAC 期间随时间推移而降低,ctDNA 状态可以预测 NAC 反应和转移复发。最后,我们构建了化疗预测模型,结合肿瘤预测模型和预处理 ctDNA 水平,对 pCR 的预测效果更好,AUC 值为 0.961。

结论

本研究建立了一个基于基因组特征、ctDNA 状态以及临床特征的非侵入性工具构建的化疗预测模型,用于预测 pCR,以识别 NAC 的应答者和非应答者,并预测乳腺癌患者的 DFS 预后。在包含基因谱突变和临床特征的模型中添加预处理 ctDNA 水平可显著提高对临床变量的分层效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caeb/10717175/a96a025d755b/12916_2023_3163_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验