文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Modified Poly(ε-caprolactone) with Tunable Degradability and Improved Biofunctionality for Regenerative Medicine.

作者信息

Shen Jun, Yuan Weihao, Badv Maryam, Moshaverinia Alireza, Weiss Paul S

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.

California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095, United States.

出版信息

ACS Mater Au. 2023 Jul 10;3(5):540-547. doi: 10.1021/acsmaterialsau.3c00027. eCollection 2023 Sep 13.


DOI:10.1021/acsmaterialsau.3c00027
PMID:38089089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10510513/
Abstract

The use of poly(ε-caprolactone) (PCL) for biomedical applications is well established, particularly for permanent implants, due to its slow degradation rate, suitable mechanical properties, and biocompatibility. However, the slow degradation rate of PCL limits its application for short-term and temporary biomedical applications where bioabsorbability is required. To enhance the properties of PCL and to expand its biomedical applications, we developed an approach to produce PCL membranes with tunable degradation rates, mechanical properties, and biofunctional features. Specifically, we utilized electrospinning to create fibrous PCL membranes, which were then chemically modified using potassium permanganate to alter their degradability while having minimal impact on their fibrous morphology. The effects of the chemical treatments were investigated by treating the samples for different time periods ranging from 6 to 48 h. After the 48 h treatment, the membrane degraded by losing 25% of its mass over 12 weeks in degradation studies, while maintaining its mechanical strength and exhibiting superior biofunctional features. Our results suggest that this approach for developing PCL with tailored properties could have significant potential for a range of biomedical applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c0e/10510513/2f168ee9f961/mg3c00027_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c0e/10510513/23930680d7fe/mg3c00027_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c0e/10510513/772500536eba/mg3c00027_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c0e/10510513/433bafb2095a/mg3c00027_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c0e/10510513/644679013b9f/mg3c00027_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c0e/10510513/2f168ee9f961/mg3c00027_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c0e/10510513/23930680d7fe/mg3c00027_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c0e/10510513/772500536eba/mg3c00027_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c0e/10510513/433bafb2095a/mg3c00027_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c0e/10510513/644679013b9f/mg3c00027_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c0e/10510513/2f168ee9f961/mg3c00027_0005.jpg

相似文献

[1]
Modified Poly(ε-caprolactone) with Tunable Degradability and Improved Biofunctionality for Regenerative Medicine.

ACS Mater Au. 2023-7-10

[2]
biocompatibility and biodegradability of poly(lactic acid)/poly(-caprolactone) blend compatibilized with poly(-caprolactone-b-tetrahydrofuran) in Wistar rats.

Biomed Phys Eng Express. 2021-3-15

[3]
Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications.

Mater Sci Eng C Mater Biol Appl. 2017-8-4

[4]
Solvent system effects on the physical and mechanical properties of electrospun Poly(ε-caprolactone) scaffolds for in vitro lung models.

J Mech Behav Biomed Mater. 2022-12

[5]
Poly(ε-caprolactone)/keratin-based composite nanofibers for biomedical applications.

J Biomed Mater Res B Appl Biomater. 2015-1

[6]
Fabrication and Characterization of Electrospun Membranes Based on "Poly(ε-caprolactone)", "Poly(3-hydroxybutyrate)" and Their Blend for Tunable Drug Delivery of Curcumin.

Polymers (Basel). 2020-9-28

[7]
Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering.

Mater Sci Eng C Mater Biol Appl. 2017-9-1

[8]
Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering.

J Biomater Sci Polym Ed. 2020-9

[9]
A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering.

J Biomater Appl. 2012-10-17

[10]
Electrospun biodegradable poly(ε-caprolactone) membranes for annulus fibrosus repair: Long-term material stability and mechanical competence.

JOR Spine. 2020-11-27

引用本文的文献

[1]
Long-Gap Sciatic Nerve Regeneration Using 3D-Printed Nerve Conduits with Controlled FGF-2 Release.

ACS Appl Mater Interfaces. 2025-7-16

[2]
Drug-Loaded Polycaprolactone/Fibroin/Polydopamine Composite Coating on an Anodized Titanium Surface with Calcium and Phosphorus Deposited Using Electrospray Technology.

ACS Omega. 2025-4-10

[3]
Synthesis and use of thermoplastic polymers for tissue engineering purposes.

Int J Pharm X. 2024-12-17

[4]
Melt Electrowriting of Polyhydroxyalkanoates for Enzymatically Degradable Scaffolds.

Adv Healthc Mater. 2025-3

[5]
Innovations in Bioengineering Virtual Special Issue.

ACS Mater Au. 2023-11-8

本文引用的文献

[1]
Biodegradable Green Composites: Effects of Potassium Permanganate (KMnO) Treatment on Thermal, Mechanical, and Morphological Behavior of Butea Parviflora (BP) Fibers.

Polymers (Basel). 2023-5-5

[2]
Novel Electrospun Polycaprolactone/Calcium Alginate Scaffolds for Skin Tissue Engineering.

Materials (Basel). 2022-12-23

[3]
Injection Molding Process Simulation of Polycaprolactone Sticks for Further 3D Printing of Medical Implants.

Materials (Basel). 2022-10-18

[4]
Long-Term Antibody Release Polycaprolactone Capsule and the Release Kinetics in Natural and Accelerated Degradation.

ACS Biomater Sci Eng. 2022-10-10

[5]
Nanofiber Scaffold Based on Polylactic Acid-Polycaprolactone for Anterior Cruciate Ligament Injury.

Polymers (Basel). 2022-7-23

[6]
A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues.

RSC Adv. 2021-3-4

[7]
Pamidronate-Encapsulated Electrospun Polycaprolactone-Based Composite Scaffolds for Osteoporotic Bone Defect Repair.

ACS Appl Bio Mater. 2020-4-20

[8]
Synthesis, Morphology, and Rheological Evaluation of HPMA (-2-Hydroxypropyl Methacrylamide)-PCL (Polycaprolactone) Conjugates.

ACS Omega. 2021-10-26

[9]
Designing Biodegradable and Active Multilayer System by Assembling an Electrospun Polycaprolactone Mat Containing Quercetin and Nanocellulose between Polylactic Acid Films.

Polymers (Basel). 2021-4-15

[10]
Gelatin coating promotes endothelialization of electrospun polycaprolactone vascular grafts.

J Biomater Sci Polym Ed. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索