Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China (M.X., J.S., H.H., X.L., G.L.).
Department of Radiology, Linfen Central Hospital, Linfen 041000, China (H.Y.).
Acad Radiol. 2024 May;31(5):1748-1761. doi: 10.1016/j.acra.2023.11.010. Epub 2023 Dec 13.
This study aimed to create a nomogram model that combines clinical factors with radiomics analysis of both intra- and peritumoral regions extracted from preoperative digital breast tomosynthesis (DBT) images, in order to develop a reliable method for predicting the lymphovascular invasion (LVI) status in invasive breast cancer (IBC) patients.
A total of 178 patients were randomly split into a training dataset (N = 124) and a validation dataset (N = 54). Comprehensive clinical data, encompassing DBT features, were gathered for all cases. Radiomics features were extracted and selected from intra- and peritumoral region to establish radiomics signature (Radscore). To construct the clinical model and nomogram model, univariate and multivariate logistic regression analyses were utilized to identify independent risk factors. To assess and validate these models, various analytical methods were employed, including receiver operating characteristic (ROC) curve analysis, calibration curve analysis, decision curve analysis (DCA), net reclassification improvement (NRI), and integrated discriminatory improvement (IDI).
The clinical model is constructed based on two independent risk factors: tumor margin and the DBT-reported lymph node metastasis (DBT_reported_LNM). Incorporating Radscore_Combine (utilizing both intra- and peritumoral radiomics features), tumor margin, and DBT_reported_LNM into the nomogram achieved a reliable predictive performance, with area under the curve (AUC) values of 0.906 and 0.905 in both datasets, respectively. The significant improvement demonstrated by the NRI and IDI indicates that the Radscore_Combine could be a valuable biomarker for effectively predicting the status of LVI.
The nomogram demonstrated a reliable ability to predict LVI in IBC patients.
本研究旨在创建一个列线图模型,该模型将临床因素与术前数字乳腺断层合成(DBT)图像中提取的肿瘤内和肿瘤周围区域的放射组学分析相结合,以开发一种可靠的方法来预测浸润性乳腺癌(IBC)患者的脉管侵犯(LVI)状态。
共 178 例患者被随机分为训练数据集(N=124)和验证数据集(N=54)。所有病例均采集综合临床数据,包括 DBT 特征。从肿瘤内和肿瘤周围区域提取放射组学特征以建立放射组学特征(Radscore)。为了构建临床模型和列线图模型,采用单变量和多变量逻辑回归分析来识别独立的危险因素。使用包括接收者操作特征(ROC)曲线分析、校准曲线分析、决策曲线分析(DCA)、净重新分类改善(NRI)和综合判别改善(IDI)在内的各种分析方法来评估和验证这些模型。
临床模型基于两个独立的危险因素构建:肿瘤边缘和 DBT 报告的淋巴结转移(DBT_reported_LNM)。将 Radscore_Combine(同时利用肿瘤内和肿瘤周围的放射组学特征)、肿瘤边缘和 DBT_reported_LNM 纳入列线图,在两个数据集的曲线下面积(AUC)值分别为 0.906 和 0.905,均具有可靠的预测性能。NRI 和 IDI 的显著改善表明,Radscore_Combine 可以作为有效预测 LVI 状态的有价值的生物标志物。
列线图显示出可靠的预测 IBC 患者 LVI 的能力。