Suppr超能文献

用于术前预测非小细胞肺癌中淋巴管侵犯和总生存期的瘤内及瘤周放射组学列线图。

Intratumoral and peritumoral radiomics nomograms for the preoperative prediction of lymphovascular invasion and overall survival in non-small cell lung cancer.

作者信息

Chen Qiaoling, Shao JingJing, Xue Ting, Peng Hui, Li Manman, Duan Shaofeng, Feng Feng

机构信息

Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, 226361, People's Republic of China.

Key Laboratory of Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, 226361, People's Republic of China.

出版信息

Eur Radiol. 2023 Feb;33(2):947-958. doi: 10.1007/s00330-022-09109-3. Epub 2022 Sep 6.

Abstract

OBJECTIVES

To evaluate the predictive value of intratumoral and peritumoral radiomics and radiomics nomogram for preoperative lymphovascular invasion (LVI) status and overall survival (OS) in patients with non-small cell lung cancer (NSCLC).

METHODS

In total, 240 NSCLC patients from our institution were randomly divided into the training cohort (n = 145) and internal validation cohort (n = 95) with a ratio of 6:4, and 65 patients from the Cancer Imaging Archive were enrolled as the external validation cohort. We extracted 1217 CT-based radiomics features from the gross tumor volume (GTV) and gross tumor volume incorporating peritumoral 3, 6, and 9 mm regions (GPTV, GPTV, GPTV). A radiomics nomogram based on clinical independent predictors and radiomics score (Radscore) of the best radiomics model was constructed. The correlation between factors and OS was evaluated with the Kaplan-Meier survival analysis and Cox proportional hazards regression analysis.

RESULTS

Compared with GTV, GPTV, and GPTV radiomics models, GPTV radiomics model exhibited better prediction performance with the AUCs of 0.82, 0.75, and 0.67 in the training, internal validation, and external validation cohorts, respectively. In the clinical model, smoking and clinical stage were independent predictors. The nomogram incorporating independent predictors and GPTV-Radscore was clinically useful, with the AUCs of 0.89, 0.83, and 0.66 in three cohorts. Pathological LVI, GPTV-Radscore-predicted, and Nomoscore-predicted LVI were associated with poor OS (p < 0.05).

CONCLUSIONS

CT-based radiomics nomogram can predict LVI and OS in patients with NSCLC and may help in making personalized treatment strategies before surgery.

KEY POINTS

• Compared with GTV, GPTV, and GPTV radiomics models, GPTV radiomics model showed better prediction performance for LVI status in NSCLC. • The radiomics nomogram based on GPTV radiomics features and clinical independent predictors could effectively predict LVI status and OS in NSCLC and outperformed the clinical model. • The radiomics nomogram had a wider scope of clinical application.

摘要

目的

评估非小细胞肺癌(NSCLC)患者瘤内和瘤周的影像组学及影像组学列线图对术前淋巴管侵犯(LVI)状态和总生存期(OS)的预测价值。

方法

将本机构的240例NSCLC患者按6:4的比例随机分为训练队列(n = 145)和内部验证队列(n = 95),并纳入来自癌症影像存档库的65例患者作为外部验证队列。我们从大体肿瘤体积(GTV)以及包含瘤周3、6和9 mm区域的大体肿瘤体积(GPTV、GPTV、GPTV)中提取了1217个基于CT的影像组学特征。构建了基于临床独立预测因子和最佳影像组学模型的影像组学评分(Radscore)的影像组学列线图。采用Kaplan-Meier生存分析和Cox比例风险回归分析评估各因素与OS之间的相关性。

结果

与GTV、GPTV和GPTV影像组学模型相比,GPTV影像组学模型在训练、内部验证和外部验证队列中的预测性能更好,其AUC分别为0.82、0.75和0.67。在临床模型中,吸烟和临床分期是独立预测因子。纳入独立预测因子和GPTV-Radscore的列线图具有临床实用性,在三个队列中的AUC分别为0.89、0.83和0.66。病理LVI、GPTV-Radscore预测的LVI和列线图评分预测的LVI与较差的OS相关(p < 0.05)。

结论

基于CT的影像组学列线图可预测NSCLC患者的LVI和OS,并可能有助于在手术前制定个性化治疗策略。

关键点

• 与GTV、GPTV和GPTV影像组学模型相比,GPTV影像组学模型对NSCLC的LVI状态显示出更好的预测性能。 • 基于GPTV影像组学特征和临床独立预测因子的影像组学列线图可有效预测NSCLC的LVI状态和OS,且优于临床模型。 • 影像组学列线图具有更广泛的临床应用范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验