Sun Yiyao, Liao Qingxuan, Fan Ying, Cui Chunxiao, Wang Yan, Yang Chunna, Hou Yang, Zhao Dan
School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, P.R. China.
Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200082, P.R. China.
BMC Cancer. 2025 Apr 1;25(1):589. doi: 10.1186/s12885-025-14004-3.
This study aimed to assess the predictive value of radiomic analysis derived from primary lesions and ipsilateral axillary suspicious lymph nodes (SLN) on dynamic contrast-enhanced MRI (DCE-MRI) for evaluating the response to neoadjuvant therapy (NAT) in early high-risk and advanced breast cancer (BC) patients.
A retrospective analysis was conducted on 222 BC patients (192 from Center I and 30 from Center II) who underwent NAT. Radiomic features were extracted from the primary lesion (intra- and peritumoral regions) and ipsilateral axillary SLN to develop radiomic signatures (RS-primary, RS-SLN). An integrated signature (RS-Com) combined features from both regions. Feature selection was performed using correlation analysis, the Mann-Whitney U test, and least absolute shrinkage and selection operator (LASSO) regression. A diagnostic nomogram was constructed by integrating RS-Com with key clinical factors. Model performance was evaluated using receiver operating characteristic (ROC) and decision curve analysis (DCA).
RS-Com demonstrated superior predictive performance compared to RS-primary and RS-SLN alone. The DeLong test confirmed that axillary SLNs provide supplementary information to the primary lesion. Among clinical factors, N staging and HER2 status were significant contributors. The nomogram, integrating RS-Com, N staging, and HER2 status, achieved the highest performance in the training (AUC: 0.926), validation (AUC: 0.868), and test (AUC: 0.839) cohorts, outperforming both the clinical models and RS-Com alone.
Radiomic features from axillary SLNs offer valuable supplementary information for predicting NAT response in BC patients. The proposed nomogram, incorporating radiomics and clinical factors, provides a robust tool for individualized treatment planning.
本研究旨在评估动态对比增强磁共振成像(DCE-MRI)中,源自原发性病灶和同侧腋窝可疑淋巴结(SLN)的影像组学分析,对早期高危和晚期乳腺癌(BC)患者新辅助治疗(NAT)反应的预测价值。
对222例接受NAT的BC患者(192例来自中心I,30例来自中心II)进行回顾性分析。从原发性病灶(瘤内和瘤周区域)和同侧腋窝SLN中提取影像组学特征,以构建影像组学特征图谱(RS-原发性、RS-SLN)。综合特征图谱(RS-Com)结合了两个区域的特征。使用相关分析、曼-惠特尼U检验和最小绝对收缩和选择算子(LASSO)回归进行特征选择。通过将RS-Com与关键临床因素相结合,构建诊断列线图。使用受试者工作特征(ROC)和决策曲线分析(DCA)评估模型性能。
与单独的RS-原发性和RS-SLN相比,RS-Com表现出更好的预测性能。DeLong检验证实腋窝SLN为原发性病灶提供了补充信息。在临床因素中,N分期和HER2状态是重要的贡献因素。整合了RS-Com、N分期和HER2状态的列线图,在训练队列(AUC:0.926)、验证队列(AUC:0.868)和测试队列(AUC:0.839)中表现最佳,优于临床模型和单独的RS-Com。
腋窝SLN的影像组学特征为预测BC患者的NAT反应提供了有价值的补充信息。所提出的结合影像组学和临床因素的列线图,为个体化治疗规划提供了一个强大的工具。