Suppr超能文献

重新思考目标显著性排序:一种新颖的全流程处理范式。

Rethinking Object Saliency Ranking: A Novel Whole-Flow Processing Paradigm.

作者信息

Song Mengke, Li Linfeng, Wu Dunquan, Song Wenfeng, Chen Chenglizhao

出版信息

IEEE Trans Image Process. 2024;33:338-353. doi: 10.1109/TIP.2023.3341332. Epub 2023 Dec 21.

Abstract

Existing salient object detection methods are capable of predicting binary maps that highlight visually salient regions. However, these methods are limited in their ability to differentiate the relative importance of multiple objects and the relationships among them, which can lead to errors and reduced accuracy in downstream tasks that depend on the relative importance of multiple objects. To conquer, this paper proposes a new paradigm for saliency ranking, which aims to completely focus on ranking salient objects by their "importance order". While previous works have shown promising performance, they still face ill-posed problems. First, the saliency ranking ground truth (GT) orders generation methods are unreasonable since determining the correct ranking order is not well-defined, resulting in false alarms. Second, training a ranking model remains challenging because most saliency ranking methods follow the multi-task paradigm, leading to conflicts and trade-offs among different tasks. Third, existing regression-based saliency ranking methods are complex for saliency ranking models due to their reliance on instance mask-based saliency ranking orders. These methods require a significant amount of data to perform accurately and can be challenging to implement effectively. To solve these problems, this paper conducts an in-depth analysis of the causes and proposes a whole-flow processing paradigm of saliency ranking task from the perspective of "GT data generation", "network structure design" and "training protocol". The proposed approach outperforms existing state-of-the-art methods on the widely-used SALICON set, as demonstrated by extensive experiments with fair and reasonable comparisons. The saliency ranking task is still in its infancy, and our proposed unified framework can serve as a fundamental strategy to guide future work. The code and data will be available at https://github.com/MengkeSong/Saliency-Ranking-Paradigm.

摘要

现有的显著目标检测方法能够预测突出视觉显著区域的二值图。然而,这些方法在区分多个目标的相对重要性及其相互关系方面能力有限,这可能导致在依赖多个目标相对重要性的下游任务中出现错误并降低准确性。为了解决这个问题,本文提出了一种新的显著度排序范式,旨在完全专注于根据“重要性顺序”对显著目标进行排序。虽然先前的工作已经展示了有前景的性能,但它们仍然面临不适定问题。首先,显著度排序的地面真值(GT)顺序生成方法不合理,因为确定正确的排序顺序没有明确的定义,导致误报。其次,训练排序模型仍然具有挑战性,因为大多数显著度排序方法遵循多任务范式,导致不同任务之间存在冲突和权衡。第三,现有的基于回归的显著度排序方法对于显著度排序模型来说很复杂,因为它们依赖基于实例掩码的显著度排序顺序。这些方法需要大量数据才能准确执行,并且有效实施可能具有挑战性。为了解决这些问题,本文对原因进行了深入分析,并从“GT数据生成”、“网络结构设计”和“训练协议”的角度提出了显著度排序任务的全流程处理范式。通过广泛的实验和公平合理的比较表明,所提出的方法在广泛使用的SALICON数据集上优于现有的最先进方法。显著度排序任务仍处于起步阶段,我们提出的统一框架可以作为指导未来工作的基本策略。代码和数据将在https://github.com/MengkeSong/Saliency-Ranking-Paradigm上提供。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验