Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France.
Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France; Fédération de Recherche Fermat, CNRS, 31000 Toulouse, France.
Colloids Surf B Biointerfaces. 2024 Feb;234:113701. doi: 10.1016/j.colsurfb.2023.113701. Epub 2023 Dec 7.
Biofouling is a persistent problem in many sectors (healthcare, medicine, marine, and membrane filtration processes). To control the biofouling of surfaces, it is essential to overcome or reduce the adhesion forces between biofilms and surfaces. To access and understand the molecular basis of these interactions, atomic force microscopy (AFM) is a well-suited technology that can measure adhesion forces at the piconewton level. However, AFM-based existing methods only probe interactions between individual cells and surfaces, which is not representative of realistic conditions given that bacteria mainly exist in biofilms. We develop here an original method using FluidFM, a combination of AFM and microfluidics, to probe the adhesion forces between biofilms and filtration membranes modified with an anti-biofouling agent, vanillin. This strategy involves i) growing bacterial biofilms on micrometer-sized polystyrene beads, ii) aspirating these biofilm beads at the aperture of microfluidic cantilevers and iii) using them as probes in force spectroscopy experiments. The results obtained first showed that COOH-functionalized polystyrene beads are more suitable for bacterial growth, and that biofilms obtained after 3 h of incubation could be used with FluidFM. Then, biofilm-scale force spectroscopy experiments showed a significant decrease in adhesion forces, adhesion work, and adhesion events after membrane modification, demonstrating the potential of vanillin-coated membranes to reduce biofouling. In addition, the comparison between results at the individual cell and biofilm scales highlighted the complexity of polymeric matrix unbinding and/or unfolding in the biofilm, showing that individual cells behave differently from biofilms. Overall, this method could have implications in the fields of materials science, chemical engineering, health, and the environment.
生物污垢是许多领域(医疗保健、医学、海洋和膜过滤过程)的一个长期存在的问题。为了控制表面的生物污垢,必须克服或减少生物膜和表面之间的粘附力。为了了解这些相互作用的分子基础,原子力显微镜(AFM)是一种非常适合的技术,可以在皮牛顿水平测量粘附力。然而,基于 AFM 的现有方法仅探测单个细胞和表面之间的相互作用,鉴于细菌主要存在于生物膜中,这并不代表实际情况。我们在这里开发了一种使用 FluidFM 的原始方法,将原子力显微镜和微流控技术结合起来,探测用防生物污垢剂香草醛修饰的过滤膜与生物膜之间的粘附力。该策略涉及:i)在微米级聚苯乙烯珠上生长细菌生物膜,ii)在微流悬臂的孔径处抽吸这些生物膜珠,iii)在力谱实验中使用它们作为探针。所得结果首先表明,COOH 功能化的聚苯乙烯珠更适合细菌生长,并且孵育 3 小时后获得的生物膜可以与 FluidFM 一起使用。然后,生物膜规模的力谱实验表明,在膜修饰后,粘附力、粘附功和粘附事件显著减少,证明香草醛涂层膜具有降低生物污垢的潜力。此外,在单细胞和生物膜尺度的结果比较中突出了生物膜中聚合物基质解键合和/或展开的复杂性,表明单个细胞的行为与生物膜不同。总的来说,这种方法可能在材料科学、化学工程、健康和环境等领域具有重要意义。