Karmakar Kripasindhu, Roy Arpita, Dhibar Subhendu, Majumder Shantanu, Bhattacharjee Subham, Rahaman S K Mehebub, Saha Ratnakar, Chatterjee Priyajit, Ray Soumya Jyoti, Saha Bidyut
Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India.
Sci Rep. 2023 Dec 15;13(1):22318. doi: 10.1038/s41598-023-48936-2.
A rapid metallohydrogelation strategy has been developed of magnesium(II)-ion using trimethylamine as a low molecular weight gelator in water medium at room temperature. The mechanical property of the synthesized metallohydrogel material is established through the rheological analysis. The nano-rose like morphological patterns of Mg(II)-metallohydrogel are characterized through field emission scanning electron microscopic study. The energy dispersive X-ray elemental mapping analysis confirms the primary gel forming elements of Mg(II)-metallohydrogel. The possible metallohydrogel formation strategy has been analyzed through FT-IR spectroscopic study. In this work, magnesium(II) metallohydrogel (Mg@TMA) based metal-semiconductor-metal structures have been developed and charge transport behaviour is studied. Here, it is confirmed that the magnesium(II) metallohydrogel (Mg@TMA) based resistive random access memory (RRAM) device is showing bipolar resistive switching behaviour at room temperature. We have also explored the mechanism of resistive switching behaviour using the formation (rupture) of conductive filaments between the metal electrodes. This RRAM devices exhibit excellent switching endurance over 10,000 switching cycles with a large ON/OFF ratio (~ 100). The easy fabrication techniques, robust resistive switching behaviour and stability of the present system makes these structures preferred candidate for applications in non-volatile memory design, neuromorphic computing, flexible electronics and optoelectronics etc.
已经开发出一种快速金属水凝胶化策略,即在室温下的水介质中使用三甲胺作为低分子量凝胶剂来形成镁(II)离子。通过流变学分析确定了合成的金属水凝胶材料的机械性能。通过场发射扫描电子显微镜研究对Mg(II)-金属水凝胶的纳米玫瑰状形态模式进行了表征。能量色散X射线元素映射分析证实了Mg(II)-金属水凝胶的主要凝胶形成元素。通过傅里叶变换红外光谱研究分析了可能的金属水凝胶形成策略。在这项工作中,已经开发出基于镁(II)金属水凝胶(Mg@TMA)的金属-半导体-金属结构,并研究了电荷传输行为。在此,证实了基于镁(II)金属水凝胶(Mg@TMA)的电阻式随机存取存储器(RRAM)器件在室温下表现出双极电阻切换行为。我们还利用金属电极之间导电细丝的形成(断裂)探索了电阻切换行为的机制。这种RRAM器件在超过10,000次切换循环中表现出优异的切换耐久性,具有大的开/关比(约100)。本系统简便的制造技术、稳健的电阻切换行为和稳定性使其成为非易失性存储器设计、神经形态计算、柔性电子和光电子等应用的首选候选结构。