Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
Machine Intelligence for Medical Engineering Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
Med Image Anal. 2024 Feb;92:103060. doi: 10.1016/j.media.2023.103060. Epub 2023 Dec 8.
The volume of medical images stored in hospitals is rapidly increasing; however, the utilization of these accumulated medical images remains limited. Existing content-based medical image retrieval (CBMIR) systems typically require example images, leading to practical limitations, such as the lack of customizable, fine-grained image retrieval, the inability to search without example images, and difficulty in retrieving rare cases. In this paper, we introduce a sketch-based medical image retrieval (SBMIR) system that enables users to find images of interest without the need for example images. The key concept is feature decomposition of medical images, which allows the entire feature of a medical image to be decomposed into and reconstructed from normal and abnormal features. Building on this concept, our SBMIR system provides an easy-to-use two-step graphical user interface: users first select a template image to specify a normal feature and then draw a semantic sketch of the disease on the template image to represent an abnormal feature. The system integrates both types of input to construct a query vector and retrieves reference images. For evaluation, ten healthcare professionals participated in a user test using two datasets. Consequently, our SBMIR system enabled users to overcome previous challenges, including image retrieval based on fine-grained image characteristics, image retrieval without example images, and image retrieval for rare cases. Our SBMIR system provides on-demand, customizable medical image retrieval, thereby expanding the utility of medical image databases.
医院存储的医学影像数量迅速增加;然而,这些积累的医学影像的利用仍然有限。现有的基于内容的医学图像检索(CBMIR)系统通常需要示例图像,这导致了一些实际的限制,例如缺乏可定制的、细粒度的图像检索、无法在没有示例图像的情况下进行搜索,以及难以检索罕见病例。在本文中,我们介绍了一种基于草图的医学图像检索(SBMIR)系统,使用户无需示例图像即可找到感兴趣的图像。其关键概念是医学图像的特征分解,允许将医学图像的整个特征分解为正常和异常特征,并从这些特征中重建。基于这个概念,我们的 SBMIR 系统提供了一个易于使用的两步图形用户界面:用户首先选择一个模板图像来指定正常特征,然后在模板图像上绘制疾病的语义草图来表示异常特征。系统集成了这两种输入来构建查询向量,并检索参考图像。在评估中,十位医疗保健专业人员使用两个数据集参加了用户测试。因此,我们的 SBMIR 系统使用户能够克服以前的挑战,包括基于细粒度图像特征的图像检索、无需示例图像的图像检索和罕见病例的图像检索。我们的 SBMIR 系统提供了按需、可定制的医学图像检索,从而扩展了医学图像数据库的实用性。