Suppr超能文献

管理生物医学图像元数据,以搜索和检索相似的图像。

Managing biomedical image metadata for search and retrieval of similar images.

机构信息

Department of Radiology, Stanford University, Stanford, CA, USA.

出版信息

J Digit Imaging. 2011 Aug;24(4):739-48. doi: 10.1007/s10278-010-9328-z.

Abstract

Radiology images are generally disconnected from the metadata describing their contents, such as imaging observations ("semantic" metadata), which are usually described in text reports that are not directly linked to the images. We developed a system, the Biomedical Image Metadata Manager (BIMM) to (1) address the problem of managing biomedical image metadata and (2) facilitate the retrieval of similar images using semantic feature metadata. Our approach allows radiologists, researchers, and students to take advantage of the vast and growing repositories of medical image data by explicitly linking images to their associated metadata in a relational database that is globally accessible through a Web application. BIMM receives input in the form of standard-based metadata files using Web service and parses and stores the metadata in a relational database allowing efficient data query and maintenance capabilities. Upon querying BIMM for images, 2D regions of interest (ROIs) stored as metadata are automatically rendered onto preview images included in search results. The system's "match observations" function retrieves images with similar ROIs based on specific semantic features describing imaging observation characteristics (IOCs). We demonstrate that the system, using IOCs alone, can accurately retrieve images with diagnoses matching the query images, and we evaluate its performance on a set of annotated liver lesion images. BIMM has several potential applications, e.g., computer-aided detection and diagnosis, content-based image retrieval, automating medical analysis protocols, and gathering population statistics like disease prevalences. The system provides a framework for decision support systems, potentially improving their diagnostic accuracy and selection of appropriate therapies.

摘要

放射学图像通常与描述其内容的元数据(如成像观察结果(“语义”元数据))断开连接,这些元数据通常在文本报告中描述,而文本报告与图像没有直接关联。我们开发了一个系统,即生物医学图像元数据管理器(BIMM),用于(1)解决管理生物医学图像元数据的问题,(2)利用语义特征元数据方便检索相似图像。我们的方法允许放射科医生、研究人员和学生通过在关系数据库中显式地将图像与其相关联的元数据链接,从而利用医学图像数据的庞大且不断增长的存储库,该数据库可通过 Web 应用程序全局访问。BIMM 通过 Web 服务以基于标准的元数据文件的形式接收输入,并解析和存储元数据到关系数据库中,从而实现高效的数据查询和维护功能。在 BIMM 中查询图像时,作为元数据存储的 2D 感兴趣区域(ROI)将自动呈现到搜索结果中包含的预览图像上。该系统的“匹配观察结果”功能根据描述成像观察特征(IOC)的特定语义特征检索具有相似 ROI 的图像。我们证明,该系统仅使用 IOC 就可以准确地检索与查询图像匹配的诊断图像,并在一组标注的肝脏病变图像上评估其性能。BIMM 有几个潜在的应用,例如,计算机辅助检测和诊断、基于内容的图像检索、自动执行医学分析协议以及收集疾病流行率等人口统计数据。该系统为决策支持系统提供了一个框架,可能会提高其诊断准确性和选择适当治疗方法的能力。

相似文献

1
Managing biomedical image metadata for search and retrieval of similar images.
J Digit Imaging. 2011 Aug;24(4):739-48. doi: 10.1007/s10278-010-9328-z.
2
Comparing image search behaviour in the ARRS GoldMiner search engine and a clinical PACS/RIS.
J Biomed Inform. 2015 Aug;56:57-64. doi: 10.1016/j.jbi.2015.04.013. Epub 2015 May 19.
3
4
Intelligent image retrieval based on radiology reports.
Eur Radiol. 2012 Dec;22(12):2750-8. doi: 10.1007/s00330-012-2608-x. Epub 2012 Aug 4.
5
Semantic-Enhanced Query Expansion System for Retrieving Medical Image Notes.
J Med Syst. 2018 Apr 25;42(6):105. doi: 10.1007/s10916-018-0954-1.
6
On combining image-based and ontological semantic dissimilarities for medical image retrieval applications.
Med Image Anal. 2014 Oct;18(7):1082-100. doi: 10.1016/j.media.2014.06.009. Epub 2014 Jul 2.
8
A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval.
IEEE Trans Pattern Anal Mach Intell. 2010 Jan;32(1):30-44. doi: 10.1109/TPAMI.2008.273.
9
Adapting content-based image retrieval techniques for the semantic annotation of medical images.
Comput Med Imaging Graph. 2016 Apr;49:37-45. doi: 10.1016/j.compmedimag.2016.01.001. Epub 2016 Feb 4.
10
Analyzing Medical Image Search Behavior: Semantics and Prediction of Query Results.
J Digit Imaging. 2015 Oct;28(5):537-46. doi: 10.1007/s10278-015-9792-6.

引用本文的文献

1
ePAD: An Image Annotation and Analysis Platform for Quantitative Imaging.
Tomography. 2019 Mar;5(1):170-183. doi: 10.18383/j.tom.2018.00055.
3
Overview on subjective similarity of images for content-based medical image retrieval.
Radiol Phys Technol. 2018 Jun;11(2):109-124. doi: 10.1007/s12194-018-0461-6. Epub 2018 May 8.
4
Special Section Guest Editorial:Radiomics and Imaging Genomics: Quantitative Imaging for Precision Medicine.
J Med Imaging (Bellingham). 2015 Oct;2(4):041001. doi: 10.1117/1.JMI.2.4.041001. Epub 2015 Dec 11.
6
On combining image-based and ontological semantic dissimilarities for medical image retrieval applications.
Med Image Anal. 2014 Oct;18(7):1082-100. doi: 10.1016/j.media.2014.06.009. Epub 2014 Jul 2.
7
Automated tracking of quantitative assessments of tumor burden in clinical trials.
Transl Oncol. 2014 Feb 1;7(1):23-35. doi: 10.1593/tlo.13796. eCollection 2014 Feb.
8
A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations.
J Biomed Inform. 2014 Jun;49:227-44. doi: 10.1016/j.jbi.2014.02.018. Epub 2014 Mar 12.
9
DCMDSM: a DICOM decomposed storage model.
J Am Med Inform Assoc. 2014 Sep-Oct;21(5):917-24. doi: 10.1136/amiajnl-2013-002337. Epub 2014 Feb 3.
10
Automatic annotation of radiological observations in liver CT images.
AMIA Annu Symp Proc. 2012;2012:257-63. Epub 2012 Nov 3.

本文引用的文献

1
Automated retrieval of CT images of liver lesions on the basis of image similarity: method and preliminary results.
Radiology. 2010 Jul;256(1):243-52. doi: 10.1148/radiol.10091694. Epub 2010 May 26.
3
The caBIG annotation and image Markup project.
J Digit Imaging. 2010 Apr;23(2):217-25. doi: 10.1007/s10278-009-9193-9. Epub 2009 Mar 18.
4
iPad: Semantic annotation and markup of radiological images.
AMIA Annu Symp Proc. 2008 Nov 6;2008:626-30.
5
Yale Image Finder (YIF): a new search engine for retrieving biomedical images.
Bioinformatics. 2008 Sep 1;24(17):1968-70. doi: 10.1093/bioinformatics/btn340. Epub 2008 Jul 9.
6
caGrid 1.0: an enterprise Grid infrastructure for biomedical research.
J Am Med Inform Assoc. 2008 Mar-Apr;15(2):138-49. doi: 10.1197/jamia.M2522. Epub 2007 Dec 20.
7
PACS through web compatible with DICOM standard and WADO service: advantages and implementation.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2601-5. doi: 10.1109/IEMBS.2006.260761.
8
MammoGrid--a prototype distributed mammographic database for Europe.
Clin Radiol. 2007 Nov;62(11):1044-51. doi: 10.1016/j.crad.2006.09.032. Epub 2007 Aug 27.
9
GoldMiner: a radiology image search engine.
AJR Am J Roentgenol. 2007 Jun;188(6):1475-8. doi: 10.2214/AJR.06.1740.
10
OsiriX: an open-source software for navigating in multidimensional DICOM images.
J Digit Imaging. 2004 Sep;17(3):205-16. doi: 10.1007/s10278-004-1014-6. Epub 2004 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验