Suppr超能文献

SpyCas9 的 RuvC 活性位点通过差向二价金属结合有助于非特异性 DNA 切割。

Differential Divalent Metal Binding by SpyCas9's RuvC Active Site Contributes to Nonspecific DNA Cleavage.

机构信息

Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, Oklahoma, USA.

Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA.

出版信息

CRISPR J. 2023 Dec;6(6):527-542. doi: 10.1089/crispr.2023.0022.

Abstract

To protect against mobile genetic elements (MGEs), some bacteria and archaea have clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) adaptive immune systems. CRISPR RNAs (crRNAs) bound to Cas nucleases hybridize to MGEs based on sequence complementarity to guide the nucleases to cleave the MGEs. This programmable DNA cleavage has been harnessed for gene editing. Safety concerns include off-target and guide RNA (gRNA)-free DNA cleavages, both of which are observed in the Cas nuclease commonly used for gene editing, Cas9 (SpyCas9). We developed a SpyCas9 variant (SpyCas9) devoid of gRNA-free DNA cleavage activity that is more selective for on-target cleavage. The H982A substitution in the metal-dependent RuvC active site reduces Mn-dependent gRNA-free DNA cleavage by ∼167-fold. Mechanistic molecular dynamics analysis shows that Mn, but not Mg, produces a gRNA-free DNA cleavage competent state that is disrupted by the H982A substitution. Our study demonstrates the feasibility of modulating cation:protein interactions to engineer safer gene editing tools.

摘要

为了防止移动遗传元件(MGE)的侵害,一些细菌和古菌拥有成簇规律间隔短回文重复序列- CRISPR 相关(CRISPR-Cas)适应性免疫系统。CRISPR 核糖核酸(crRNA)与 Cas 核酸酶结合,根据与 MGE 序列互补的程度来指导核酸酶切割 MGE。这种可编程的 DNA 切割已被用于基因编辑。安全性问题包括脱靶和无向导 RNA(gRNA)的 DNA 切割,这两种情况都在常用于基因编辑的 Cas 核酸酶 Cas9(SpyCas9)中观察到。我们开发了一种缺乏无 gRNA DNA 切割活性的 SpyCas9 变体(SpyCas9),它对靶标切割的选择性更高。金属依赖性 RuvC 活性位点中的 H982A 取代将 Mn 依赖性无 gRNA DNA 切割降低了约 167 倍。机制分子动力学分析表明,Mn 而不是 Mg 产生 gRNA 无 DNA 切割活性状态,该状态被 H982A 取代所破坏。我们的研究证明了调节阳离子:蛋白质相互作用以设计更安全的基因编辑工具的可行性。

相似文献

2
Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence.
Biochemistry. 2021 Dec 14;60(49):3783-3800. doi: 10.1021/acs.biochem.1c00354. Epub 2021 Nov 10.
4
Fitness effects of CRISPR endonucleases in populations.
Elife. 2022 Sep 22;11:e71809. doi: 10.7554/eLife.71809.
5
Rationally Designed Anti-CRISPR Nucleic Acid Inhibitors of CRISPR-Cas9.
Nucleic Acid Ther. 2019 Jun;29(3):136-147. doi: 10.1089/nat.2018.0758. Epub 2019 Apr 16.
6
Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5853-5860. doi: 10.1073/pnas.1913445117. Epub 2020 Mar 2.
7
Catalytic-state structure of Candidatus Hydrogenedentes Cas12b revealed by cryo-EM studies.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf519.
9
CRISPRoffT: comprehensive database of CRISPR/Cas off-targets.
Nucleic Acids Res. 2025 Jan 6;53(D1):D914-D924. doi: 10.1093/nar/gkae1025.
10
Evolutionary trends in CRISPR-Cas systems.
mSystems. 2025 Jun 18:e0016625. doi: 10.1128/msystems.00166-25.

引用本文的文献

1
A Cryptic Binding Pocket Regulates the Metal-Dependent Activity of Cas9.
bioRxiv. 2025 Aug 26:2025.08.25.672025. doi: 10.1101/2025.08.25.672025.
2

本文引用的文献

2
Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence.
Biochemistry. 2021 Dec 14;60(49):3783-3800. doi: 10.1021/acs.biochem.1c00354. Epub 2021 Nov 10.
3
Establishing the allosteric mechanism in CRISPR-Cas9.
Wiley Interdiscip Rev Comput Mol Sci. 2021 May-Jun;11(3). doi: 10.1002/wcms.1503. Epub 2020 Oct 26.
4
Active-Site Models of Cas9 in DNA Cleavage State.
Front Mol Biosci. 2021 Apr 21;8:653262. doi: 10.3389/fmolb.2021.653262. eCollection 2021.
5
Optimized Magnesium Force Field Parameters for Biomolecular Simulations with Accurate Solvation, Ion-Binding, and Water-Exchange Properties.
J Chem Theory Comput. 2021 Apr 13;17(4):2530-2540. doi: 10.1021/acs.jctc.0c01281. Epub 2021 Mar 15.
6
The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies.
Front Cell Infect Microbiol. 2021 Jan 28;10:619763. doi: 10.3389/fcimb.2020.619763. eCollection 2020.
7
Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Molecular Dynamics.
ACS Catal. 2020 Nov 20;10(22):13596-13605. doi: 10.1021/acscatal.0c03566. Epub 2020 Nov 10.
8
Asymmetric Roles of Two Histidine Residues in Cas9 Catalytic Domains upon Chemical Rescue.
Biochemistry. 2021 Jan 26;60(3):194-200. doi: 10.1021/acs.biochem.0c00766. Epub 2021 Jan 11.
9
Cas9 Modulates the Transcriptome in Caco-2 Intestinal Epithelial Cells.
Genes (Basel). 2020 Oct 14;11(10):1193. doi: 10.3390/genes11101193.
10
Guide-free Cas9 from pathogenic bacteria causes severe damage to DNA.
Sci Adv. 2020 Jun 17;6(25):eaaz4849. doi: 10.1126/sciadv.aaz4849. eCollection 2020 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验