Suppr超能文献

计算预测螺旋蛋白胶凝动力学和结构。

Computational Prediction of Coiled-Coil Protein Gelation Dynamics and Structure.

机构信息

Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States.

Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States.

出版信息

Biomacromolecules. 2024 Jan 8;25(1):258-271. doi: 10.1021/acs.biomac.3c00968. Epub 2023 Dec 18.

Abstract

Protein hydrogels represent an important and growing biomaterial for a multitude of applications, including diagnostics and drug delivery. We have previously explored the ability to engineer the thermoresponsive supramolecular assembly of coiled-coil proteins into hydrogels with varying gelation properties, where we have defined important parameters in the coiled-coil hydrogel design. Using Rosetta energy scores and Poisson-Boltzmann electrostatic energies, we iterate a computational design strategy to predict the gelation of coiled-coil proteins while simultaneously exploring five new coiled-coil protein hydrogel sequences. Provided this library, we explore the impact of in silico energies on structure and gelation kinetics, where we also reveal a range of blue autofluorescence that enables hydrogel disassembly and recovery. As a result of this library, we identify the new coiled-coil hydrogel sequence, Q5, capable of gelation within 24 h at 4 °C, a more than 2-fold increase over that of our previous iteration Q2. The fast gelation time of Q5 enables the assessment of structural transition in real time using small-angle X-ray scattering (SAXS) that is correlated to coarse-grained and atomistic molecular dynamics simulations revealing the supramolecular assembling behavior of coiled-coils toward nanofiber assembly and gelation. This work represents the first system of hydrogels with predictable self-assembly, autofluorescent capability, and a molecular model of coiled-coil fiber formation.

摘要

蛋白质水凝胶是一种重要且不断发展的生物材料,可应用于多种领域,包括诊断和药物输送。我们之前探索了将卷曲螺旋蛋白的热响应超分子组装工程化为具有不同凝胶特性的水凝胶的能力,其中我们定义了卷曲螺旋水凝胶设计中的重要参数。我们使用 Rosetta 能量评分和泊松-玻尔兹曼静电能,迭代计算设计策略来预测卷曲螺旋蛋白的凝胶化,同时探索了五个新的卷曲螺旋蛋白水凝胶序列。有了这个文库,我们探索了计算能量对结构和凝胶动力学的影响,其中我们还揭示了一系列蓝色自发荧光,从而使水凝胶能够解组装和恢复。通过这个文库,我们鉴定出了新的卷曲螺旋水凝胶序列 Q5,其在 4°C 下 24 小时内即可凝胶化,比我们之前的迭代 Q2 快了两倍多。Q5 的快速凝胶化时间使我们能够使用小角 X 射线散射 (SAXS) 实时评估结构转变,这与粗粒化和原子分子动力学模拟相关联,揭示了卷曲螺旋向纳米纤维组装和凝胶化的超分子组装行为。这项工作代表了第一个具有可预测自组装、自发荧光能力和卷曲螺旋纤维形成分子模型的水凝胶系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5c/10777397/a9d022226d05/bm3c00968_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验